Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 14 x + 79 x^{2} )( 1 + 79 x^{2} )$ |
| $1 - 14 x + 158 x^{2} - 1106 x^{3} + 6241 x^{4}$ | |
| Frobenius angles: | $\pm0.211343260462$, $\pm0.5$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $360$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5280$ | $39705600$ | $243371446560$ | $1517052506112000$ | $9468612060261050400$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $66$ | $6362$ | $493614$ | $38948638$ | $3077165586$ | $243089098202$ | $19203909552894$ | $1517108688069118$ | $119851595322724386$ | $9468276083013490202$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 360 curves (of which all are hyperelliptic):
- $y^2=27 x^6+34 x^5+54 x^4+7 x^3+66 x^2+3 x+61$
- $y^2=53 x^6+72 x^4+10 x^3+72 x^2+53$
- $y^2=73 x^6+74 x^5+74 x^4+54 x^3+49 x^2+74 x+45$
- $y^2=12 x^6+17 x^5+19 x^4+31 x^3+71 x^2+37 x+62$
- $y^2=28 x^6+70 x^5+55 x^4+69 x^2+8 x+78$
- $y^2=21 x^6+35 x^5+55 x^4+65 x^3+23 x^2+3 x+40$
- $y^2=62 x^6+9 x^5+70 x^4+17 x^3+29 x^2+9 x+65$
- $y^2=45 x^6+60 x^5+65 x^4+44 x^3+50 x^2+54 x+49$
- $y^2=3 x^6+10 x^5+65 x^4+44 x^3+50 x^2+33 x+24$
- $y^2=30 x^6+7 x^3+44 x^2+11 x+66$
- $y^2=78 x^6+61 x^5+5 x^4+13 x^3+38 x^2+2 x+50$
- $y^2=6 x^6+45 x^5+10 x^4+11 x^3+2 x^2+18 x+30$
- $y^2=17 x^6+42 x^5+75 x^4+56 x^3+30 x^2+8 x+51$
- $y^2=68 x^6+11 x^5+12 x^4+40 x^3+6 x^2+45 x$
- $y^2=41 x^6+35 x^5+65 x^4+62 x^3+60 x^2+66 x+66$
- $y^2=72 x^6+12 x^5+5 x^4+11 x^3+57 x^2+4 x+40$
- $y^2=76 x^6+4 x^5+71 x^4+67 x^3+35 x^2+71 x+50$
- $y^2=39 x^6+2 x^5+3 x^4+5 x^3+2 x^2+37 x+1$
- $y^2=6 x^6+66 x^5+62 x^4+23 x^3+35 x^2+30 x+34$
- $y^2=28 x^6+58 x^5+47 x^4+67 x^3+45 x^2+57 x+58$
- and 340 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$| The isogeny class factors as 1.79.ao $\times$ 1.79.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{79^{2}}$ is 1.6241.abm $\times$ 1.6241.gc. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.79.o_gc | $2$ | (not in LMFDB) |