Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 28 x + 348 x^{2} - 2212 x^{3} + 6241 x^{4}$ |
| Frobenius angles: | $\pm0.123766042460$, $\pm0.274866475067$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.4776192.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $20$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4350$ | $38410500$ | $243405298350$ | $1517563978266000$ | $9468531892360116750$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $52$ | $6154$ | $493684$ | $38961766$ | $3077139532$ | $243087690922$ | $19203908473228$ | $1517108824593406$ | $119851596574228276$ | $9468276091477167274$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=68 x^6+27 x^5+53 x^4+13 x^3+49 x^2+48 x+17$
- $y^2=58 x^6+64 x^5+11 x^4+52 x^3+34 x^2+10 x+74$
- $y^2=30 x^6+37 x^5+2 x^4+32 x^3+18 x^2+72 x+46$
- $y^2=78 x^6+26 x^5+29 x^4+38 x^3+58 x^2+58 x+65$
- $y^2=25 x^6+25 x^5+63 x^4+54 x^3+41 x^2+59 x+34$
- $y^2=12 x^6+60 x^5+36 x^4+34 x^3+56 x^2+72 x+20$
- $y^2=66 x^6+17 x^5+23 x^4+30 x^3+27 x^2+13 x+13$
- $y^2=24 x^6+2 x^5+35 x^4+14 x^3+13 x^2+47 x+61$
- $y^2=37 x^6+37 x^5+66 x^4+45 x^3+52 x^2+39 x+62$
- $y^2=73 x^6+76 x^5+28 x^4+61 x^3+54 x^2+64 x+7$
- $y^2=23 x^6+62 x^5+76 x^4+60 x^3+13 x^2+39 x+39$
- $y^2=21 x^6+26 x^5+11 x^4+46 x^3+62 x^2+23 x+27$
- $y^2=68 x^6+7 x^5+75 x^4+34 x^3+14 x^2+55 x+37$
- $y^2=42 x^6+25 x^5+63 x^4+42 x^3+2 x^2+7 x+68$
- $y^2=56 x^6+33 x^5+70 x^4+53 x^3+23 x^2+11 x+51$
- $y^2=36 x^6+66 x^5+32 x^4+78 x^3+67 x^2+19 x+21$
- $y^2=24 x^6+74 x^5+54 x^4+50 x^3+30 x^2+42 x+7$
- $y^2=59 x^6+29 x^5+25 x^4+58 x^3+76 x^2+21 x+35$
- $y^2=11 x^6+47 x^5+45 x^4+48 x^3+50 x^2+20 x+77$
- $y^2=61 x^6+54 x^5+14 x^4+47 x^3+25 x^2+57 x+57$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is 4.0.4776192.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.79.bc_nk | $2$ | (not in LMFDB) |