Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 28 x + 347 x^{2} - 2212 x^{3} + 6241 x^{4}$ |
| Frobenius angles: | $\pm0.114139050386$, $\pm0.279461582628$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.634256.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $18$ |
| Isomorphism classes: | 18 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4349$ | $38397321$ | $243363725252$ | $1517495953959801$ | $9468459519126656549$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $52$ | $6152$ | $493600$ | $38960020$ | $3077116012$ | $243087476582$ | $19203907378372$ | $1517108827419364$ | $119851596705425440$ | $9468276093100641752$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=37 x^6+56 x^5+60 x^4+7 x^3+77 x^2+77$
- $y^2=23 x^6+4 x^5+70 x^4+26 x^3+4 x^2+74 x+54$
- $y^2=42 x^6+54 x^5+36 x^4+57 x^3+73 x^2+14 x+68$
- $y^2=66 x^6+20 x^5+40 x^4+8 x^3+2 x+17$
- $y^2=33 x^6+65 x^5+54 x^4+8 x^3+x^2+30 x+42$
- $y^2=3 x^6+68 x^5+35 x^4+20 x^3+59 x^2+32 x+76$
- $y^2=30 x^6+7 x^5+55 x^4+71 x^3+44 x^2+27 x+61$
- $y^2=27 x^6+2 x^5+17 x^4+43 x^3+74 x^2+73 x+78$
- $y^2=41 x^6+2 x^5+12 x^4+13 x^3+62 x^2+39 x+47$
- $y^2=73 x^6+57 x^5+22 x^4+30 x^3+13 x^2+64 x+17$
- $y^2=23 x^6+35 x^5+60 x^4+17 x^3+22 x^2+25 x+37$
- $y^2=63 x^6+34 x^5+45 x^4+60 x^3+70 x^2+37 x+10$
- $y^2=12 x^6+42 x^5+62 x^4+43 x^3+35 x^2+19 x+66$
- $y^2=49 x^6+61 x^5+40 x^4+40 x^3+26 x+77$
- $y^2=9 x^6+55 x^5+59 x^4+44 x^3+16 x^2+8 x+57$
- $y^2=74 x^6+48 x^5+18 x^4+43 x^3+33 x^2+56 x+20$
- $y^2=33 x^6+25 x^5+60 x^4+12 x^3+x^2+11 x+3$
- $y^2=78 x^6+37 x^5+47 x^4+78 x^3+27 x^2+31 x+15$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is 4.0.634256.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.79.bc_nj | $2$ | (not in LMFDB) |