Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 92 x^{2} + 6241 x^{4}$ |
| Frobenius angles: | $\pm0.348919330400$, $\pm0.651080669600$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-10}, \sqrt{66})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $264$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6334$ | $40119556$ | $243086511694$ | $1517421906810000$ | $9468276082835740654$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $80$ | $6426$ | $493040$ | $38958118$ | $3077056400$ | $243085567866$ | $19203908986160$ | $1517108933418238$ | $119851595982618320$ | $9468276083044634106$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 264 curves (of which all are hyperelliptic):
- $y^2=50 x^6+51 x^5+72 x^4+2 x^3+18 x^2+37 x+27$
- $y^2=71 x^6+74 x^5+58 x^4+6 x^3+54 x^2+32 x+2$
- $y^2=73 x^6+38 x^5+56 x^4+74 x^2+14 x+26$
- $y^2=61 x^6+35 x^5+10 x^4+64 x^2+42 x+78$
- $y^2=8 x^6+43 x^5+48 x^4+8 x^3+29 x^2+62 x+33$
- $y^2=24 x^6+50 x^5+65 x^4+24 x^3+8 x^2+28 x+20$
- $y^2=6 x^6+54 x^5+7 x^4+41 x^3+70 x^2+35 x+28$
- $y^2=18 x^6+4 x^5+21 x^4+44 x^3+52 x^2+26 x+5$
- $y^2=4 x^6+4 x^5+58 x^4+6 x^2+30 x+18$
- $y^2=12 x^6+12 x^5+16 x^4+18 x^2+11 x+54$
- $y^2=51 x^6+41 x^5+40 x^4+30 x^3+60 x^2+17 x+44$
- $y^2=74 x^6+44 x^5+41 x^4+11 x^3+22 x^2+51 x+53$
- $y^2=64 x^6+4 x^5+28 x^4+2 x^3+24 x^2+54 x+9$
- $y^2=34 x^6+12 x^5+5 x^4+6 x^3+72 x^2+4 x+27$
- $y^2=24 x^6+32 x^5+65 x^4+28 x^3+58 x^2+59 x+31$
- $y^2=72 x^6+17 x^5+37 x^4+5 x^3+16 x^2+19 x+14$
- $y^2=30 x^6+20 x^5+70 x^4+35 x^3+60 x^2+7 x+44$
- $y^2=11 x^6+60 x^5+52 x^4+26 x^3+22 x^2+21 x+53$
- $y^2=44 x^6+60 x^5+75 x^4+50 x^3+11 x^2+76 x+56$
- $y^2=53 x^6+22 x^5+67 x^4+71 x^3+33 x^2+70 x+10$
- and 244 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-10}, \sqrt{66})\). |
| The base change of $A$ to $\F_{79^{2}}$ is 1.6241.do 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-165}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.79.a_ado | $4$ | (not in LMFDB) |