Properties

Label 2.73.v_jt
Base field $\F_{73}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{73}$
Dimension:  $2$
L-polynomial:  $1 + 21 x + 253 x^{2} + 1533 x^{3} + 5329 x^{4}$
Frobenius angles:  $\pm0.669972317809$, $\pm0.755842394823$
Angle rank:  $2$ (numerical)
Number field:  4.0.571389.1
Galois group:  $D_{4}$
Jacobians:  $40$
Isomorphism classes:  40

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7137$ $28754973$ $150527273481$ $806924151439029$ $4297566449889752832$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $95$ $5395$ $386939$ $28414579$ $2073042950$ $151333535275$ $11047406311715$ $806460059927299$ $58871586620008127$ $4297625831380946350$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{73}$.

Endomorphism algebra over $\F_{73}$
The endomorphism algebra of this simple isogeny class is 4.0.571389.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.av_jt$2$(not in LMFDB)