Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 21 x + 253 x^{2} + 1533 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.669972317809$, $\pm0.755842394823$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.571389.1 |
Galois group: | $D_{4}$ |
Jacobians: | $40$ |
Isomorphism classes: | 40 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7137$ | $28754973$ | $150527273481$ | $806924151439029$ | $4297566449889752832$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $95$ | $5395$ | $386939$ | $28414579$ | $2073042950$ | $151333535275$ | $11047406311715$ | $806460059927299$ | $58871586620008127$ | $4297625831380946350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=18 x^6+66 x^5+24 x^4+40 x^3+8 x^2+46 x+42$
- $y^2=3 x^6+29 x^5+3 x^4+50 x^3+70 x^2+18 x+13$
- $y^2=66 x^6+32 x^5+54 x^4+42 x^3+21 x^2+69 x+48$
- $y^2=27 x^6+16 x^5+34 x^4+71 x^3+71 x^2+20 x+25$
- $y^2=43 x^6+53 x^5+22 x^4+72 x^3+71 x^2+43 x+69$
- $y^2=11 x^6+38 x^5+25 x^4+53 x^3+25 x^2+44 x+50$
- $y^2=x^6+67 x^5+41 x^4+33 x^3+56 x^2+22 x+6$
- $y^2=29 x^6+31 x^5+41 x^4+35 x^3+x^2+17 x+30$
- $y^2=67 x^6+59 x^5+40 x^4+44 x^3+16 x^2+17 x+33$
- $y^2=23 x^6+47 x^5+4 x^4+22 x^3+15 x^2+65 x+25$
- $y^2=6 x^6+42 x^5+64 x^4+11 x^3+42 x^2+37 x+27$
- $y^2=42 x^6+29 x^5+5 x^4+10 x^3+6 x^2+27 x+55$
- $y^2=25 x^6+17 x^5+57 x^4+20 x^3+60 x^2+21 x+14$
- $y^2=61 x^6+17 x^5+3 x^4+26 x^3+58 x^2+15 x+63$
- $y^2=69 x^6+31 x^5+48 x^4+58 x^3+38 x^2+46 x+27$
- $y^2=8 x^6+38 x^5+34 x^4+30 x^2+38 x+69$
- $y^2=14 x^6+25 x^5+24 x^4+9 x^3+50 x^2+70 x+25$
- $y^2=44 x^6+41 x^5+40 x^4+30 x^3+53 x^2+64 x+53$
- $y^2=17 x^6+5 x^5+59 x^4+16 x^3+36 x^2+60 x+4$
- $y^2=69 x^6+45 x^5+39 x^4+45 x^3+34 x^2+22 x+62$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is 4.0.571389.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.av_jt | $2$ | (not in LMFDB) |