Invariants
This isogeny class is simple and geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
| $A(\F_{q^r})$ |
$7008$ |
$28368384$ |
$151528777056$ |
$805974838665216$ |
$4297920422371068768$ |
Point counts of the curve
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
| $C(\F_{q^r})$ |
$94$ |
$5326$ |
$389518$ |
$28381150$ |
$2073213694$ |
$151334059822$ |
$11047396002478$ |
$806460058804414$ |
$58871587354144414$ |
$4297625827899155086$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 78 curves (of which all are hyperelliptic):
- $y^2=10 x^6+38 x^5+16 x^4+23 x^3+70 x^2+2 x+11$
- $y^2=3 x^6+35 x^5+15 x^4+24 x^3+21 x^2+23 x+19$
- $y^2=36 x^6+72 x^5+69 x^4+37 x^3+34 x^2+67 x+48$
- $y^2=20 x^6+53 x^5+25 x^4+48 x^3+55 x^2+7 x+21$
- $y^2=43 x^6+48 x^5+27 x^4+11 x^3+26 x^2+46 x+32$
- $y^2=27 x^6+70 x^5+38 x^4+19 x^3+14 x^2+69 x+18$
- $y^2=55 x^6+21 x^5+35 x^4+18 x^3+21 x^2+19 x+49$
- $y^2=19 x^6+2 x^5+2 x^4+29 x^3+24 x^2+49 x+32$
- $y^2=50 x^6+23 x^5+9 x^4+64 x^3+7 x^2+24 x+68$
- $y^2=44 x^6+13 x^5+56 x^4+49 x^3+53 x^2+24 x+48$
- $y^2=24 x^6+42 x^5+22 x^4+69 x^3+68 x^2+14 x+23$
- $y^2=48 x^6+5 x^5+35 x^4+35 x^3+12 x^2+32 x+42$
- $y^2=64 x^6+28 x^5+58 x^4+66 x^3+63 x^2+60 x+10$
- $y^2=36 x^6+61 x^5+16 x^4+65 x^3+42 x^2+44 x+55$
- $y^2=9 x^6+29 x^5+17 x^4+37 x^3+62 x^2+66 x+37$
- $y^2=57 x^6+64 x^5+51 x^4+3 x^3+53 x^2+69 x+29$
- $y^2=10 x^5+5 x^4+59 x^3+12 x^2+63 x+69$
- $y^2=70 x^6+64 x^5+30 x^3+48 x^2+62 x+6$
- $y^2=69 x^6+63 x^5+3 x^4+66 x^3+39 x^2+32 x+9$
- $y^2=28 x^6+47 x^5+27 x^4+59 x^3+9 x^2+34 x+52$
- and 58 more
- $y^2=62 x^6+54 x^5+55 x^4+29 x^3+60 x^2+59 x+38$
- $y^2=66 x^6+51 x^5+72 x^4+46 x^3+28 x^2+66 x+5$
- $y^2=69 x^6+50 x^5+25 x^4+4 x^3+59 x^2+30 x+1$
- $y^2=64 x^6+51 x^5+64 x^4+50 x^3+5 x^2+29 x+58$
- $y^2=14 x^6+48 x^5+9 x^4+39 x^3+58 x^2+2 x+33$
- $y^2=33 x^6+38 x^5+41 x^4+63 x^3+13 x^2+62 x+49$
- $y^2=63 x^6+14 x^5+24 x^4+36 x^3+5 x^2+5 x+35$
- $y^2=40 x^6+18 x^5+16 x^4+57 x^3+49 x^2+9 x+12$
- $y^2=23 x^6+14 x^5+46 x^4+68 x^3+71 x^2+51 x+67$
- $y^2=16 x^6+71 x^5+41 x^4+20 x^3+36 x^2+52 x+12$
- $y^2=48 x^6+21 x^5+68 x^4+72 x^2+32 x+69$
- $y^2=3 x^6+68 x^5+45 x^4+22 x^3+28 x^2+46 x+44$
- $y^2=19 x^6+63 x^5+63 x^4+28 x^2+42 x+57$
- $y^2=24 x^6+62 x^5+23 x^4+50 x^3+23 x^2+9 x+3$
- $y^2=36 x^6+28 x^5+59 x^4+60 x^3+47 x^2+5 x+12$
- $y^2=57 x^6+6 x^5+55 x^4+66 x^3+52 x^2+44 x+48$
- $y^2=8 x^6+23 x^5+65 x^4+2 x^3+46 x^2+16 x+17$
- $y^2=17 x^6+22 x^5+47 x^4+30 x^3+40 x^2+9 x+29$
- $y^2=2 x^6+70 x^5+45 x^4+53 x^3+3 x^2+56 x+35$
- $y^2=29 x^6+28 x^5+8 x^4+53 x^3+48 x^2+17 x+6$
- $y^2=8 x^6+18 x^5+19 x^4+39 x^3+61 x^2+15 x+69$
- $y^2=4 x^6+51 x^5+6 x^4+66 x^3+63 x^2+27 x+69$
- $y^2=66 x^6+26 x^5+27 x^4+47 x^3+14 x^2+35 x+16$
- $y^2=8 x^6+26 x^5+33 x^4+69 x^3+34 x^2+72 x+61$
- $y^2=57 x^6+37 x^4+13 x^3+32 x^2+72 x+48$
- $y^2=49 x^6+45 x^5+72 x^4+57 x^3+25 x^2+68 x+8$
- $y^2=69 x^6+5 x^5+32 x^4+22 x^3+4 x^2+11 x+2$
- $y^2=71 x^6+30 x^5+24 x^4+14 x^3+39 x^2+7 x+61$
- $y^2=27 x^6+59 x^5+53 x^4+71 x^3+70 x^2+40 x+45$
- $y^2=29 x^6+3 x^5+x^4+19 x^3+3 x^2+60 x+52$
- $y^2=71 x^6+7 x^5+24 x^4+8 x^3+4 x^2+25 x+64$
- $y^2=65 x^6+3 x^5+29 x^4+69 x^3+23 x^2+66 x+72$
- $y^2=50 x^6+57 x^5+40 x^4+15 x^3+61 x^2+54 x+46$
- $y^2=60 x^6+32 x^5+67 x^4+26 x^3+45 x^2+27 x+47$
- $y^2=50 x^6+58 x^5+69 x^4+31 x^3+2 x^2+60 x+23$
- $y^2=65 x^6+9 x^5+40 x^4+23 x^3+3 x^2+60 x+20$
- $y^2=13 x^6+4 x^5+34 x^4+19 x^3+59 x^2+59 x+46$
- $y^2=52 x^6+65 x^5+57 x^4+50 x^3+70 x^2+13 x+67$
- $y^2=59 x^6+71 x^5+69 x^4+14 x^3+12 x^2+53 x+8$
- $y^2=69 x^6+10 x^5+71 x^4+25 x^3+48 x^2+9 x+72$
- $y^2=4 x^6+18 x^5+17 x^4+44 x^3+63 x^2+57 x+40$
- $y^2=5 x^6+20 x^5+60 x^4+18 x^3+64 x^2+43 x+16$
- $y^2=21 x^6+40 x^5+11 x^4+3 x^3+11 x^2+62 x+38$
- $y^2=72 x^6+54 x^5+46 x^4+57 x^3+59 x^2+55 x+56$
- $y^2=18 x^6+47 x^5+41 x^4+63 x^3+29 x^2+22 x+20$
- $y^2=61 x^6+14 x^5+45 x^4+20 x^3+18 x^2+7 x+60$
- $y^2=3 x^6+27 x^5+8 x^4+53 x^3+46 x^2+x+43$
- $y^2=65 x^6+6 x^5+57 x^4+17 x^3+20 x^2+48 x+50$
- $y^2=19 x^6+69 x^5+5 x^4+20 x^3+70 x^2+62 x+16$
- $y^2=57 x^6+8 x^5+30 x^4+56 x^3+57 x^2+3 x+1$
- $y^2=9 x^6+22 x^5+32 x^4+7 x^3+60 x^2+66 x+57$
- $y^2=49 x^6+11 x^5+61 x^4+9 x^3+23 x^2+17 x+55$
- $y^2=18 x^6+x^5+31 x^4+26 x^3+60 x^2+29 x$
- $y^2=49 x^6+24 x^5+54 x^4+4 x^3+36 x^2+30 x+71$
- $y^2=23 x^6+38 x^5+41 x^4+39 x^3+21 x^2+9 x+69$
- $y^2=50 x^6+54 x^5+52 x^4+46 x^3+37 x^2+28 x+52$
- $y^2=7 x^6+31 x^5+18 x^4+36 x^3+56 x^2+34 x+66$
- $y^2=48 x^6+46 x^5+53 x^4+23 x^3+9 x^2+60 x+45$
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$
| The endomorphism algebra of this simple isogeny class is 4.0.13824.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
| 2.73.au_hq | $2$ | (not in LMFDB) |