Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 4 x + 73 x^{2} )( 1 + 12 x + 73 x^{2} )$ |
$1 + 16 x + 194 x^{2} + 1168 x^{3} + 5329 x^{4}$ | |
Frobenius angles: | $\pm0.575208518631$, $\pm0.747819727108$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $128$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6708$ | $29112720$ | $150669736308$ | $806585375232000$ | $4297671635204045748$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $5462$ | $387306$ | $28402654$ | $2073093690$ | $151334313014$ | $11047396814922$ | $806460053016766$ | $58871587441871898$ | $4297625827036418582$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 128 curves (of which all are hyperelliptic):
- $y^2=72 x^5+38 x^4+70 x^3+34 x^2+69 x+46$
- $y^2=12 x^6+7 x^5+29 x^4+64 x^3+52 x^2+14 x+38$
- $y^2=63 x^6+29 x^5+23 x^4+36 x^3+14 x^2+6 x+65$
- $y^2=49 x^6+42 x^5+55 x^4+45 x^3+55 x^2+27 x+30$
- $y^2=51 x^6+59 x^5+15 x^4+x^3+15 x^2+59 x+51$
- $y^2=45 x^6+55 x^5+27 x^4+27 x^3+x^2+18 x+47$
- $y^2=24 x^6+61 x^5+43 x^4+34 x^3+36 x^2+20 x+44$
- $y^2=52 x^6+19 x^5+67 x^4+x^3+28 x^2+10 x+28$
- $y^2=46 x^6+50 x^5+70 x^4+65 x^3+19 x^2+4 x+70$
- $y^2=63 x^6+60 x^5+22 x^4+33 x^3+42 x^2+21 x+9$
- $y^2=34 x^6+38 x^5+54 x^4+8 x^3+19 x^2+38 x+39$
- $y^2=25 x^5+5 x^4+8 x^3+26 x^2+21 x+48$
- $y^2=19 x^6+x^5+58 x^4+47 x^3+57 x^2+71 x+22$
- $y^2=53 x^6+25 x^5+29 x^4+7 x^3+16 x^2+57 x+57$
- $y^2=x^6+59 x^5+2 x^4+63 x^3+58 x^2+56 x+43$
- $y^2=58 x^6+63 x^4+69 x^3+53 x^2+63 x+52$
- $y^2=26 x^6+11 x^5+12 x^4+28 x^3+19 x^2+57 x+3$
- $y^2=41 x^6+6 x^5+24 x^4+26 x^3+41 x^2+20 x+27$
- $y^2=3 x^6+67 x^5+61 x^4+53 x^3+65 x^2+46 x+9$
- $y^2=58 x^6+57 x^5+36 x^4+17 x^3+60 x^2+15 x+41$
- and 108 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The isogeny class factors as 1.73.e $\times$ 1.73.m and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.aq_hm | $2$ | (not in LMFDB) |
2.73.ai_du | $2$ | (not in LMFDB) |
2.73.i_du | $2$ | (not in LMFDB) |