Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 4 x + 73 x^{2} )( 1 + 16 x + 73 x^{2} )$ |
$1 + 12 x + 82 x^{2} + 876 x^{3} + 5329 x^{4}$ | |
Frobenius angles: | $\pm0.424791481369$, $\pm0.885799748780$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $360$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6300$ | $28501200$ | $151881666300$ | $806241945600000$ | $4297409431749157500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $86$ | $5350$ | $390422$ | $28390558$ | $2072967206$ | $151334772550$ | $11047399773062$ | $806460164445118$ | $58871585812590326$ | $4297625830493011750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 360 curves (of which all are hyperelliptic):
- $y^2=39 x^6+72 x^5+5 x^4+59 x^3+72 x^2+25 x+16$
- $y^2=38 x^6+25 x^5+69 x^4+64 x^3+55 x^2+53 x+16$
- $y^2=65 x^6+31 x^5+12 x^4+57 x^3+14 x^2+35 x+44$
- $y^2=25 x^6+43 x^5+66 x^4+55 x^3+19 x^2+19 x+18$
- $y^2=38 x^6+35 x^5+23 x^4+34 x^3+31 x^2+56 x+48$
- $y^2=8 x^6+26 x^5+64 x^4+13 x^3+64 x^2+26 x+8$
- $y^2=44 x^5+57 x^4+69 x^3+21 x^2+12 x+38$
- $y^2=41 x^6+65 x^5+71 x^4+60 x^3+9 x^2+34 x+16$
- $y^2=13 x^6+18 x^5+72 x^4+45 x^3+62 x^2+60 x+6$
- $y^2=30 x^6+63 x^5+63 x^4+29 x^3+11 x^2+39 x+63$
- $y^2=48 x^6+17 x^5+62 x^4+41 x^3+24 x^2+19 x+69$
- $y^2=16 x^6+46 x^5+27 x^4+48 x^3+64 x^2+70 x+67$
- $y^2=37 x^6+50 x^5+36 x^4+23 x^3+45 x^2+18 x+68$
- $y^2=72 x^6+39 x^5+48 x^4+35 x^3+56 x^2+62 x+16$
- $y^2=30 x^6+27 x^5+54 x^4+62 x^3+52 x^2+32 x+4$
- $y^2=30 x^6+11 x^5+54 x^4+38 x^3+61 x^2+49 x+37$
- $y^2=38 x^6+28 x^5+11 x^4+43 x^3+53 x^2+47 x+15$
- $y^2=69 x^6+67 x^5+49 x^4+22 x^3+33 x^2+5 x+8$
- $y^2=55 x^6+25 x^5+42 x^4+38 x^3+66 x^2+26 x+8$
- $y^2=54 x^6+17 x^5+62 x^4+47 x^3+20 x^2+32 x+1$
- and 340 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The isogeny class factors as 1.73.ae $\times$ 1.73.q and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.