Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 12 x + 71 x^{2} + 876 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.414486393774$, $\pm0.918846939559$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-37})\) |
Galois group: | $C_2^2$ |
Jacobians: | $48$ |
Isomorphism classes: | 52 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6289$ | $28382257$ | $152036046724$ | $806157622133289$ | $4297496994239436049$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $86$ | $5328$ | $390818$ | $28387588$ | $2073009446$ | $151334162358$ | $11047403439494$ | $806460148605316$ | $58871586065576114$ | $4297625829419788368$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=65 x^6+8 x^5+12 x^4+66 x^3+47 x^2+7 x+1$
- $y^2=35 x^6+42 x^5+13 x^4+58 x^3+47 x^2+46 x+27$
- $y^2=66 x^6+21 x^5+27 x^4+50 x^2+40 x+56$
- $y^2=67 x^6+57 x^5+61 x^4+53 x^3+55 x^2+49 x+6$
- $y^2=34 x^6+13 x^5+14 x^4+50 x^3+34 x^2+x+43$
- $y^2=51 x^6+70 x^5+9 x^4+22 x^3+41 x^2+24 x+41$
- $y^2=48 x^6+37 x^5+69 x^4+46 x^3+13 x^2+58 x+5$
- $y^2=12 x^6+28 x^5+15 x^4+58 x^3+39 x^2+24 x+17$
- $y^2=48 x^6+5 x^5+5 x^4+24 x^3+44 x^2+31 x+41$
- $y^2=26 x^6+46 x^5+42 x^4+37 x^3+34 x^2+24$
- $y^2=67 x^6+33 x^5+27 x^4+62 x^3+38 x^2+55 x+21$
- $y^2=29 x^6+47 x^5+44 x^4+39 x^3+51 x^2+23 x+25$
- $y^2=61 x^6+2 x^5+16 x^4+50 x^3+36 x^2+9 x+18$
- $y^2=28 x^6+5 x^5+66 x^4+67 x^3+28 x^2+24 x+32$
- $y^2=55 x^6+41 x^5+53 x^4+4 x^3+53 x^2+64 x+19$
- $y^2=28 x^6+x^5+16 x^4+63 x^3+47 x^2+23 x+66$
- $y^2=61 x^6+40 x^5+28 x^4+59 x^3+69 x^2+62 x+38$
- $y^2=34 x^6+39 x^5+7 x^4+51 x^3+50 x^2+26 x+35$
- $y^2=61 x^6+55 x^4+52 x^3+33 x^2+31 x+19$
- $y^2=57 x^6+28 x^5+58 x^4+72 x^3+43 x^2+60 x+32$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{3}}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-37})\). |
The base change of $A$ to $\F_{73^{3}}$ is 1.389017.biq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-37}) \)$)$ |
Base change
This is a primitive isogeny class.