Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 7 x + 38 x^{2} + 511 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.356074170452$, $\pm0.821324494304$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.502516092.1 |
Galois group: | $D_{4}$ |
Jacobians: | $128$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5886$ | $28547100$ | $151754194008$ | $806720492088000$ | $4297301957695378446$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $81$ | $5357$ | $390096$ | $28407409$ | $2072915361$ | $151334276834$ | $11047393673145$ | $806460154879201$ | $58871587258255968$ | $4297625825667139757$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 128 curves (of which all are hyperelliptic):
- $y^2=44 x^6+21 x^5+18 x^4+47 x^3+69 x^2+20 x+40$
- $y^2=4 x^6+25 x^5+10 x^4+70 x^3+62 x^2+32 x+5$
- $y^2=52 x^6+25 x^5+61 x^4+12 x^3+18 x^2+70 x+27$
- $y^2=4 x^6+48 x^5+52 x^4+67 x^3+45 x^2+59 x+56$
- $y^2=12 x^6+32 x^5+6 x^4+11 x^3+37 x^2+44 x+71$
- $y^2=64 x^6+13 x^5+6 x^4+54 x^3+39 x^2+28 x+49$
- $y^2=40 x^6+31 x^5+28 x^4+32 x^3+55 x^2+11 x+7$
- $y^2=38 x^6+34 x^5+50 x^4+56 x^3+56 x^2+52 x+4$
- $y^2=33 x^6+64 x^5+13 x^3+24 x^2+54 x+3$
- $y^2=33 x^6+45 x^5+31 x^4+52 x^3+55 x^2+46 x+6$
- $y^2=48 x^6+39 x^5+13 x^4+45 x^3+34 x^2+17 x+68$
- $y^2=8 x^6+64 x^4+7 x^3+68 x^2+8 x+72$
- $y^2=15 x^6+53 x^5+2 x^4+44 x^3+20 x^2+9 x+72$
- $y^2=51 x^6+30 x^5+14 x^4+37 x^3+65 x^2+58 x+28$
- $y^2=14 x^6+4 x^5+68 x^4+70 x^3+26 x+58$
- $y^2=54 x^6+15 x^5+18 x^4+33 x^3+50 x^2+4$
- $y^2=13 x^6+23 x^5+2 x^4+34 x^3+63 x^2+20 x+43$
- $y^2=58 x^6+21 x^5+45 x^4+33 x^3+18 x^2+14 x+5$
- $y^2=57 x^6+26 x^5+46 x^4+65 x^3+63 x^2+64 x+71$
- $y^2=63 x^6+56 x^5+55 x^4+58 x^3+21 x^2+50 x+39$
- and 108 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is 4.0.502516092.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.ah_bm | $2$ | (not in LMFDB) |