Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 6 x + 87 x^{2} + 438 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.400671060955$, $\pm0.728654286781$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.12651553.1 |
Galois group: | $D_{4}$ |
Jacobians: | $230$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5861$ | $29146753$ | $151319954432$ | $806656005039769$ | $4297354940899635101$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $5468$ | $388982$ | $28405140$ | $2072940920$ | $151333690574$ | $11047410272552$ | $806460088456420$ | $58871586637348742$ | $4297625828134966988$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 230 curves (of which all are hyperelliptic):
- $y^2=10 x^6+48 x^5+40 x^4+17 x^3+65 x^2+70 x+31$
- $y^2=48 x^6+41 x^5+32 x^4+72 x^3+71 x^2+71 x+42$
- $y^2=24 x^6+20 x^5+55 x^4+31 x^3+67 x^2+15 x+52$
- $y^2=38 x^6+7 x^5+5 x^4+10 x^3+39 x^2+57 x+36$
- $y^2=70 x^6+51 x^5+64 x^4+35 x^3+48 x^2+37 x+42$
- $y^2=67 x^6+65 x^5+17 x^4+25 x^3+23 x^2+69 x+47$
- $y^2=59 x^6+5 x^5+12 x^4+3 x^3+15 x^2+31 x+52$
- $y^2=43 x^6+30 x^5+55 x^4+21 x^3+70 x^2+37 x+49$
- $y^2=5 x^6+69 x^5+50 x^4+67 x^3+65 x^2+14 x+18$
- $y^2=10 x^6+3 x^5+26 x^4+59 x^3+37 x^2+49 x+12$
- $y^2=42 x^6+61 x^5+19 x^4+50 x^3+48 x^2+18 x+27$
- $y^2=69 x^6+33 x^5+56 x^4+12 x^3+35 x^2+72 x+51$
- $y^2=53 x^6+25 x^5+36 x^4+50 x^3+28 x^2+70 x+64$
- $y^2=42 x^6+27 x^5+10 x^4+46 x^3+25 x^2+22 x+26$
- $y^2=49 x^6+6 x^5+2 x^4+37 x^3+66 x^2+63 x+13$
- $y^2=47 x^6+57 x^5+24 x^4+58 x^3+48 x^2+68$
- $y^2=49 x^6+20 x^5+70 x^4+30 x^3+66 x^2+5 x+67$
- $y^2=32 x^6+27 x^5+41 x^4+62 x^3+5 x^2+15 x+71$
- $y^2=68 x^6+3 x^5+65 x^4+68 x^3+60 x^2+41 x+40$
- $y^2=33 x^6+20 x^5+8 x^4+27 x^3+20 x^2+14 x+21$
- and 210 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is 4.0.12651553.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.ag_dj | $2$ | (not in LMFDB) |