Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + x - 22 x^{2} + 73 x^{3} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.239605158726$, $\pm0.789058022318$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.759109004.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $138$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5382$ | $28169388$ | $151445863296$ | $807027275718144$ | $4297593240597904182$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $75$ | $5285$ | $389304$ | $28418209$ | $2073055875$ | $151334900210$ | $11047394517675$ | $806460005465089$ | $58871586741235992$ | $4297625824469935925$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 138 curves (of which all are hyperelliptic):
- $y^2=27 x^6+56 x^5+19 x^4+7 x^3+25 x^2+2 x+46$
- $y^2=36 x^6+71 x^5+46 x^4+21 x^3+49 x^2+3 x+20$
- $y^2=41 x^5+10 x^4+32 x^3+47 x^2+68 x+38$
- $y^2=31 x^6+5 x^5+29 x^4+36 x^3+19 x^2+40 x+29$
- $y^2=2 x^6+63 x^5+33 x^4+54 x^3+50 x^2+41 x+61$
- $y^2=64 x^6+47 x^5+57 x^4+20 x^3+64 x^2+29 x+7$
- $y^2=12 x^6+16 x^5+60 x^4+23 x^3+19 x^2+67 x+22$
- $y^2=14 x^6+25 x^5+18 x^4+11 x^3+51 x^2+34 x+47$
- $y^2=28 x^6+71 x^5+71 x^4+7 x^3+34 x^2+40 x+41$
- $y^2=19 x^6+63 x^5+70 x^4+55 x^3+6 x^2+43 x+46$
- $y^2=44 x^6+64 x^5+55 x^3+18 x^2+35 x+62$
- $y^2=49 x^6+46 x^5+59 x^4+64 x^3+62 x^2+29 x+68$
- $y^2=13 x^6+13 x^5+37 x^4+9 x^3+33 x^2+45 x+39$
- $y^2=43 x^6+55 x^5+44 x^4+32 x^3+58 x^2+33 x+46$
- $y^2=65 x^6+61 x^5+x^4+66 x^3+24 x^2+25 x+26$
- $y^2=23 x^6+2 x^5+54 x^4+14 x^3+59 x^2+39 x+64$
- $y^2=39 x^6+9 x^5+48 x^4+6 x^3+47 x^2+35 x+57$
- $y^2=36 x^6+56 x^5+x^4+72 x^3+6 x^2+9 x+56$
- $y^2=52 x^6+9 x^5+37 x^4+43 x^3+19 x^2+29 x+27$
- $y^2=36 x^6+70 x^5+72 x^4+13 x^3+44 x^2+43 x+22$
- and 118 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is 4.0.759109004.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.73.ab_aw | $2$ | (not in LMFDB) |