Properties

Label 2.73.b_aw
Base field $\F_{73}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{73}$
Dimension:  $2$
L-polynomial:  $1 + x - 22 x^{2} + 73 x^{3} + 5329 x^{4}$
Frobenius angles:  $\pm0.239605158726$, $\pm0.789058022318$
Angle rank:  $2$ (numerical)
Number field:  4.0.759109004.1
Galois group:  $D_{4}$
Jacobians:  $138$
Cyclic group of points:    no
Non-cyclic primes:   $3$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5382$ $28169388$ $151445863296$ $807027275718144$ $4297593240597904182$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $75$ $5285$ $389304$ $28418209$ $2073055875$ $151334900210$ $11047394517675$ $806460005465089$ $58871586741235992$ $4297625824469935925$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 138 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{73}$.

Endomorphism algebra over $\F_{73}$
The endomorphism algebra of this simple isogeny class is 4.0.759109004.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.ab_aw$2$(not in LMFDB)