Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 20 x + 218 x^{2} - 1460 x^{3} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.147269909683$, $\pm0.411142035117$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.341824.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $140$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4068$ | $28589904$ | $151607106756$ | $806410949170176$ | $4297567575016796868$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $54$ | $5366$ | $389718$ | $28396510$ | $2073043494$ | $151334872022$ | $11047411300518$ | $806460174956734$ | $58871586675685014$ | $4297625826164008886$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 140 curves (of which all are hyperelliptic):
- $y^2=43 x^6+30 x^5+65 x^4+56 x^3+55 x^2+66 x+49$
- $y^2=65 x^6+26 x^5+13 x^4+54 x^3+5 x^2+28 x+37$
- $y^2=7 x^6+61 x^5+56 x^4+67 x^3+38 x^2+62 x+60$
- $y^2=52 x^6+16 x^5+62 x^4+x^3+47 x^2+36 x+66$
- $y^2=54 x^6+51 x^5+66 x^4+23 x^3+16 x^2+72 x+46$
- $y^2=18 x^6+12 x^5+5 x^4+53 x^3+4 x^2+30 x+2$
- $y^2=33 x^6+27 x^5+50 x^4+72 x^3+38 x^2+52 x+36$
- $y^2=34 x^6+53 x^5+62 x^4+56 x^3+30 x^2+5 x+63$
- $y^2=38 x^6+31 x^5+21 x^4+55 x^3+43 x^2+6 x+63$
- $y^2=44 x^6+15 x^5+39 x^4+48 x^3+29 x^2+7 x+28$
- $y^2=29 x^6+43 x^5+38 x^4+24 x^3+36 x^2+9 x+27$
- $y^2=72 x^6+46 x^5+35 x^4+71 x^3+23 x^2+60 x+56$
- $y^2=29 x^6+68 x^5+x^4+17 x^3+37 x^2+45 x+2$
- $y^2=58 x^6+70 x^5+12 x^4+65 x^3+42 x^2+52 x+60$
- $y^2=53 x^6+71 x^5+44 x^4+41 x^3+14 x^2+40 x+59$
- $y^2=11 x^6+48 x^5+2 x^4+63 x^3+18 x^2+6 x+11$
- $y^2=19 x^6+68 x^5+36 x^4+40 x^3+32 x^2+34 x+50$
- $y^2=43 x^6+32 x^5+60 x^4+37 x^3+6 x^2+13 x+10$
- $y^2=55 x^6+68 x^5+35 x^4+71 x^3+14 x^2+56 x+68$
- $y^2=71 x^6+69 x^5+35 x^4+13 x^3+67 x^2+45 x+70$
- and 120 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is 4.0.341824.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.73.u_ik | $2$ | (not in LMFDB) |