Properties

Label 2.73.au_ik
Base field $\F_{73}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{73}$
Dimension:  $2$
L-polynomial:  $1 - 20 x + 218 x^{2} - 1460 x^{3} + 5329 x^{4}$
Frobenius angles:  $\pm0.147269909683$, $\pm0.411142035117$
Angle rank:  $2$ (numerical)
Number field:  4.0.341824.2
Galois group:  $D_{4}$
Jacobians:  $140$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4068$ $28589904$ $151607106756$ $806410949170176$ $4297567575016796868$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $54$ $5366$ $389718$ $28396510$ $2073043494$ $151334872022$ $11047411300518$ $806460174956734$ $58871586675685014$ $4297625826164008886$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 140 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{73}$.

Endomorphism algebra over $\F_{73}$
The endomorphism algebra of this simple isogeny class is 4.0.341824.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.u_ik$2$(not in LMFDB)