Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 5 x + 73 x^{2} )^{2}$ |
| $1 - 10 x + 171 x^{2} - 730 x^{3} + 5329 x^{4}$ | |
| Frobenius angles: | $\pm0.405478609088$, $\pm0.405478609088$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $24$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3, 23$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4761$ | $29713401$ | $152090640144$ | $806233944159081$ | $4297249683239995161$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $64$ | $5572$ | $390958$ | $28390276$ | $2072890144$ | $151333900558$ | $11047410136288$ | $806460173758468$ | $58871586269534974$ | $4297625821533792772$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=27 x^6+43 x^5+17 x^4+19 x^3+57 x^2+23 x+65$
- $y^2=47 x^6+63 x^5+63 x^4+25 x^3+10 x^2+8 x+61$
- $y^2=x^6+36 x^3+9$
- $y^2=30 x^6+12 x^5+2 x^4+47 x^3+35 x^2+56 x+14$
- $y^2=64 x^6+26 x^5+53 x^4+9 x^2+42 x+45$
- $y^2=24 x^6+63 x^5+64 x^4+36 x^3+15 x^2+5 x+62$
- $y^2=60 x^6+x^5+16 x^4+71 x^3+70 x^2+18 x+53$
- $y^2=64 x^6+66 x^5+31 x^4+47 x^3+12 x^2+7 x+31$
- $y^2=50 x^6+49 x^5+10 x^4+45 x^3+17 x^2+15 x+54$
- $y^2=28 x^6+41 x^5+63 x^4+27 x^3+54 x^2+58 x+18$
- $y^2=40 x^6+35 x^5+28 x^4+31 x^3+22 x^2+41 x+43$
- $y^2=28 x^6+44 x^5+21 x^4+58 x^3+36 x^2+51 x+53$
- $y^2=53 x^6+24 x^5+56 x^4+70 x^3+5 x^2+19 x+34$
- $y^2=55 x^6+39 x^5+41 x^4+17 x^3+33 x^2+10 x+66$
- $y^2=31 x^6+58 x^5+60 x^4+56 x^3+16 x^2+68 x+10$
- $y^2=40 x^6+17 x^5+58 x^4+16 x^3+51 x^2+26 x+60$
- $y^2=62 x^6+21 x^5+69 x^4+54 x^2+13 x+45$
- $y^2=6 x^6+28 x^5+60 x^4+60 x^3+30 x^2+7 x+19$
- $y^2=10 x^6+71 x^5+22 x^4+48 x^3+15 x^2+24 x+25$
- $y^2=41 x^6+59 x^5+22 x^4+6 x^3+24 x^2+54 x+15$
- $y^2=57 x^6+21 x^5+68 x^4+47 x^3+14 x^2+24 x+51$
- $y^2=12 x^6+68 x^5+17 x^4+49 x^3+64 x^2+69 x+67$
- $y^2=2 x^6+36 x^5+8 x^4+46 x^3+5 x^2+31 x+58$
- $y^2=2 x^6+63 x^5+11 x^4+56 x^3+50 x^2+20 x+59$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The isogeny class factors as 1.73.af 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-267}) \)$)$ |
Base change
This is a primitive isogeny class.