Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 14 x + 73 x^{2} )( 1 + 7 x + 73 x^{2} )$ |
$1 - 7 x + 48 x^{2} - 511 x^{3} + 5329 x^{4}$ | |
Frobenius angles: | $\pm0.194368965322$, $\pm0.634347079753$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $267$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4860$ | $28654560$ | $150996953520$ | $806727301142400$ | $4297975843832718300$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $67$ | $5377$ | $388150$ | $28407649$ | $2073240427$ | $151334262574$ | $11047400101651$ | $806460137374081$ | $58871586069495430$ | $4297625823664437457$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 267 curves (of which all are hyperelliptic):
- $y^2=67 x^6+14 x^5+48 x^4+38 x^3+5 x^2+47 x+68$
- $y^2=11 x^6+15 x^5+70 x^4+51 x^3+x^2+66 x+42$
- $y^2=10 x^6+68 x^5+29 x^4+64 x^3+51 x^2+49 x+71$
- $y^2=51 x^6+45 x^5+21 x^4+12 x^3+3 x^2+25 x+29$
- $y^2=10 x^6+28 x^5+55 x^4+65 x^3+26 x^2+43 x+39$
- $y^2=62 x^6+5 x^5+35 x^4+61 x^3+33 x^2+63 x+39$
- $y^2=49 x^6+x^5+60 x^4+65 x^3+16 x^2+61 x+31$
- $y^2=50 x^6+18 x^5+52 x^4+69 x^3+57 x^2+13 x+19$
- $y^2=55 x^6+30 x^5+33 x^4+14 x^3+66 x^2+49 x+13$
- $y^2=18 x^6+16 x^5+23 x^4+42 x^3+37 x^2+52 x+48$
- $y^2=21 x^6+2 x^5+39 x^4+8 x^3+7 x^2+13 x+60$
- $y^2=57 x^5+71 x^4+6 x^3+45 x^2+36 x+42$
- $y^2=53 x^6+46 x^5+59 x^4+21 x^3+18 x^2+52 x+16$
- $y^2=51 x^6+8 x^5+62 x^4+21 x^3+29 x^2+40 x+17$
- $y^2=55 x^6+71 x^5+45 x^3+56 x^2+52 x+29$
- $y^2=25 x^5+70 x^4+42 x^3+36 x^2+47 x$
- $y^2=37 x^6+9 x^5+21 x^4+15 x^3+20 x^2+28 x+37$
- $y^2=59 x^6+72 x^5+12 x^4+70 x^3+71 x^2+14 x$
- $y^2=42 x^6+6 x^5+29 x^4+38 x^3+27 x^2+55 x+60$
- $y^2=54 x^6+35 x^5+20 x^4+40 x^3+28 x^2+38 x+36$
- and 247 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The isogeny class factors as 1.73.ao $\times$ 1.73.h and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.