Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 3 x - 36 x^{2} - 219 x^{3} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.156107889234$, $\pm0.749758415914$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.20097253.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $256$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5072$ | $27977152$ | $150942983744$ | $806878185697024$ | $4297638510321585872$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $71$ | $5249$ | $388010$ | $28412961$ | $2073077711$ | $151334985422$ | $11047409611799$ | $806460075403009$ | $58871587191784346$ | $4297625828944315409$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 256 curves (of which all are hyperelliptic):
- $y^2=41 x^6+13 x^5+44 x^4+26 x^3+26 x^2+41 x+59$
- $y^2=26 x^6+57 x^5+37 x^4+71 x^3+34 x^2+55 x+53$
- $y^2=31 x^6+17 x^5+3 x^4+61 x^3+71 x^2+53 x+66$
- $y^2=9 x^6+11 x^5+69 x^4+3 x^3+52 x^2+57 x+11$
- $y^2=x^6+11 x^5+56 x^4+45 x^3+21 x^2+64 x+6$
- $y^2=23 x^6+70 x^5+15 x^4+20 x^3+56 x^2+71 x+38$
- $y^2=47 x^6+49 x^5+62 x^4+34 x^3+15 x^2+9 x+20$
- $y^2=35 x^6+60 x^5+69 x^4+26 x^3+51 x^2+37 x+53$
- $y^2=44 x^6+72 x^5+38 x^4+53 x^3+44 x^2+6 x+13$
- $y^2=46 x^6+59 x^5+x^4+36 x^3+26 x^2+36 x+61$
- $y^2=49 x^6+38 x^5+66 x^4+25 x^3+66 x^2+40 x+63$
- $y^2=51 x^6+42 x^5+24 x^4+9 x^3+5 x^2+36 x+52$
- $y^2=30 x^6+24 x^5+x^4+23 x^3+46 x^2+19 x+16$
- $y^2=21 x^6+65 x^5+2 x^4+4 x^3+17 x^2+25 x+22$
- $y^2=50 x^6+33 x^5+53 x^4+34 x^3+7 x^2+49 x+60$
- $y^2=12 x^6+68 x^5+5 x^4+36 x^3+22 x^2+41 x+8$
- $y^2=71 x^6+12 x^5+42 x^4+13 x^3+69 x^2+23 x+49$
- $y^2=72 x^6+58 x^5+12 x^4+31 x^3+9 x^2+72 x+71$
- $y^2=49 x^6+58 x^5+70 x^4+68 x^3+62 x^2+x+12$
- $y^2=24 x^6+46 x^5+72 x^4+16 x^3+6 x^2+22 x+39$
- and 236 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is 4.0.20097253.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.73.d_abk | $2$ | (not in LMFDB) |