Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 12 x + 170 x^{2} + 852 x^{3} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.560264740863$, $\pm0.675512528063$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.18432.2 |
Galois group: | $C_4$ |
Jacobians: | $126$ |
Isomorphism classes: | 162 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6076$ | $26418448$ | $127444640764$ | $645719283320832$ | $3255425444785213756$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $5238$ | $356076$ | $25410334$ | $1804330164$ | $128099879574$ | $9095118276300$ | $645753543473470$ | $45848500727983380$ | $3255243552458619318$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 126 curves (of which all are hyperelliptic):
- $y^2=28 x^6+11 x^5+39 x^4+57 x^3+50 x^2+16 x+56$
- $y^2=29 x^6+36 x^5+21 x^4+42 x^3+57 x^2+12 x+25$
- $y^2=37 x^6+24 x^5+54 x^4+36 x^3+54 x^2+x+16$
- $y^2=29 x^6+11 x^5+52 x^4+40 x^3+47 x^2+55 x+19$
- $y^2=65 x^6+54 x^5+57 x^4+30 x^3+45 x^2+30 x+43$
- $y^2=21 x^6+35 x^5+25 x^4+38 x^3+44 x^2+63 x+32$
- $y^2=8 x^6+35 x^5+17 x^4+3 x^3+17 x^2+34 x+69$
- $y^2=4 x^6+3 x^5+19 x^4+34 x^3+48 x^2+54 x+51$
- $y^2=45 x^6+70 x^5+49 x^4+21 x^3+69 x^2+16 x+44$
- $y^2=14 x^6+56 x^5+16 x^4+10 x^3+55 x^2+18 x+43$
- $y^2=63 x^6+23 x^5+18 x^4+48 x^3+34 x^2+14 x+5$
- $y^2=37 x^6+19 x^5+25 x^4+39 x^3+49 x^2+64 x+24$
- $y^2=36 x^6+69 x^5+33 x^4+46 x^3+46 x^2+46 x+64$
- $y^2=24 x^6+37 x^5+51 x^4+52 x^3+41 x^2+24 x+40$
- $y^2=50 x^6+39 x^5+46 x^4+23 x^3+16 x^2+29 x+50$
- $y^2=10 x^6+45 x^5+9 x^4+55 x^3+25 x^2+60 x+28$
- $y^2=45 x^6+32 x^5+58 x^4+33 x^3+34 x^2+12 x+40$
- $y^2=39 x^6+46 x^5+21 x^4+66 x^3+31 x^2+30 x+43$
- $y^2=44 x^6+59 x^5+66 x^4+18 x^3+70 x^2+64 x+29$
- $y^2=67 x^6+51 x^5+10 x^4+25 x^3+6 x^2+61 x+20$
- and 106 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is 4.0.18432.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.am_go | $2$ | (not in LMFDB) |