Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 9 x + 10 x^{2} + 639 x^{3} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.345997922256$, $\pm0.987335411078$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-203})\) |
Galois group: | $C_2^2$ |
Jacobians: | $28$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5700$ | $25102800$ | $128952810000$ | $645591902587200$ | $3255292442751217500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $81$ | $4981$ | $360288$ | $25405321$ | $1804256451$ | $128098892878$ | $9095124494061$ | $645753520884721$ | $45848501520612768$ | $3255243548135778301$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):
- $y^2=49 x^6+31 x^5+61 x^4+8 x^3+x^2+60 x+63$
- $y^2=63 x^6+21 x^5+7 x^4+42 x^3+66 x^2+2 x+63$
- $y^2=57 x^6+19 x^5+42 x^4+43 x^3+22 x^2+2 x+41$
- $y^2=36 x^6+12 x^5+9 x^4+34 x^3+63 x^2+62 x+36$
- $y^2=18 x^6+59 x^5+67 x^4+69 x^3+68 x^2+22 x+40$
- $y^2=64 x^6+57 x^5+43 x^4+33 x^3+52 x^2+46 x+13$
- $y^2=44 x^6+33 x^5+3 x^4+53 x^3+47 x^2+29 x+67$
- $y^2=4 x^6+18 x^5+51 x^4+55 x^3+42 x^2+8 x+63$
- $y^2=25 x^6+32 x^5+13 x^4+35 x^3+40 x^2+38 x+29$
- $y^2=33 x^6+21 x^5+52 x^4+25 x^3+51 x^2+12 x+20$
- $y^2=36 x^6+44 x^5+67 x^4+41 x^3+38 x^2+70 x+69$
- $y^2=11 x^6+23 x^5+63 x^4+42 x^3+55 x^2+65 x+33$
- $y^2=54 x^6+4 x^5+56 x^4+25 x^3+20 x^2+35 x+38$
- $y^2=55 x^6+46 x^5+62 x^4+24 x^3+36 x^2+x+8$
- $y^2=25 x^6+34 x^5+14 x^4+9 x^3+8 x^2+54 x+10$
- $y^2=60 x^6+21 x^5+38 x^4+38 x^3+17 x^2+20 x+18$
- $y^2=41 x^6+57 x^5+35 x^4+41 x^3+49 x^2+53 x+1$
- $y^2=34 x^6+4 x^5+61 x^4+60 x^3+47 x^2+62 x+58$
- $y^2=32 x^6+29 x^5+69 x^4+26 x^3+6 x^2+5 x+49$
- $y^2=22 x^6+35 x^5+50 x^4+52 x^3+34 x^2+31 x+37$
- $y^2=16 x^6+33 x^5+42 x^4+8 x^3+46 x^2+63 x+16$
- $y^2=61 x^6+30 x^5+11 x^4+5 x^3+68 x^2+62$
- $y^2=57 x^6+30 x^5+23 x^4+40 x^3+18 x^2+28 x+57$
- $y^2=54 x^6+24 x^5+47 x^4+4 x^3+63 x^2+50 x+5$
- $y^2=3 x^6+16 x^5+58 x^4+26 x^3+5 x^2+51 x$
- $y^2=36 x^6+12 x^5+40 x^4+41 x^3+9 x^2+26 x+13$
- $y^2=6 x^6+38 x^5+x^4+15 x^3+46 x^2+64 x+43$
- $y^2=12 x^6+47 x^5+13 x^4+6 x^3+62 x^2+23 x+9$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{3}}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-203})\). |
The base change of $A$ to $\F_{71^{3}}$ is 1.357911.bts 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-203}) \)$)$ |
Base change
This is a primitive isogeny class.