Properties

Label 2.71.j_k
Base field $\F_{71}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{71}$
Dimension:  $2$
L-polynomial:  $1 + 9 x + 10 x^{2} + 639 x^{3} + 5041 x^{4}$
Frobenius angles:  $\pm0.345997922256$, $\pm0.987335411078$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-203})\)
Galois group:  $C_2^2$
Jacobians:  $28$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5700$ $25102800$ $128952810000$ $645591902587200$ $3255292442751217500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $81$ $4981$ $360288$ $25405321$ $1804256451$ $128098892878$ $9095124494061$ $645753520884721$ $45848501520612768$ $3255243548135778301$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{71^{3}}$.

Endomorphism algebra over $\F_{71}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-203})\).
Endomorphism algebra over $\overline{\F}_{71}$
The base change of $A$ to $\F_{71^{3}}$ is 1.357911.bts 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-203}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.71.aj_k$2$(not in LMFDB)
2.71.as_ip$3$(not in LMFDB)
2.71.aj_k$6$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.71.aj_k$2$(not in LMFDB)
2.71.as_ip$3$(not in LMFDB)
2.71.aj_k$6$(not in LMFDB)
2.71.a_cj$6$(not in LMFDB)
2.71.s_ip$6$(not in LMFDB)
2.71.a_acj$12$(not in LMFDB)