Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + x + 71 x^{2} )^{2}$ |
| $1 + 2 x + 143 x^{2} + 142 x^{3} + 5041 x^{4}$ | |
| Frobenius angles: | $\pm0.518899318962$, $\pm0.518899318962$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $39$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $73$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5329$ | $26863489$ | $127949290000$ | $645255659945689$ | $3255333229043165209$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $74$ | $5324$ | $357488$ | $25392084$ | $1804279054$ | $128101625678$ | $9095115287794$ | $645753440851684$ | $45848501154655568$ | $3255243556991654204$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 39 curves (of which all are hyperelliptic):
- $y^2=18 x^6+35 x^5+56 x^4+27 x^3+64 x^2+10 x+59$
- $y^2=43 x^6+59 x^5+2 x^4+25 x^3+43 x^2+64 x+12$
- $y^2=28 x^6+16 x^5+56 x^4+66 x^3+66 x^2+66 x+33$
- $y^2=2 x^6+10 x^5+44 x^4+63 x^3+16 x^2+58 x+48$
- $y^2=46 x^6+26 x^4+5 x^3+49 x^2+19 x+10$
- $y^2=46 x^6+27 x^5+7 x^4+37 x^3+6 x^2+67 x+53$
- $y^2=30 x^6+21 x^5+26 x^4+53 x^3+9 x^2+42 x+47$
- $y^2=5 x^6+57 x^5+42 x^4+67 x^3+66 x^2+58 x+54$
- $y^2=28 x^6+29 x^5+66 x^4+35 x^3+62 x^2+20 x+11$
- $y^2=41 x^6+29 x^5+21 x^4+2 x^3+21 x^2+29 x+41$
- $y^2=58 x^6+62 x^5+9 x^4+20 x^3+35 x^2+67 x+35$
- $y^2=9 x^6+21 x^5+30 x^4+57 x^3+51 x^2+39 x+33$
- $y^2=17 x^6+48 x^5+22 x^4+65 x^3+23 x^2+34 x+47$
- $y^2=48 x^6+24 x^5+6 x^4+5 x^3+43 x^2+13 x+17$
- $y^2=26 x^6+25 x^5+38 x^4+6 x^3+38 x^2+25 x+26$
- $y^2=63 x^6+3 x^5+32 x^4+59 x^3+52 x^2+14 x+50$
- $y^2=3 x^6+26 x^5+18 x^4+20 x^3+18 x^2+26 x+3$
- $y^2=38 x^6+7 x^5+7 x^4+x^3+4 x^2+69 x+3$
- $y^2=43 x^6+44 x^5+69 x^4+35 x^3+43 x^2+25 x+68$
- $y^2=56 x^6+62 x^5+30 x^4+57 x^3+52 x^2+34 x+13$
- and 19 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$| The isogeny class factors as 1.71.b 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-283}) \)$)$ |
Base change
This is a primitive isogeny class.