Properties

Label 2.71.ai_ae
Base field $\F_{71}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{71}$
Dimension:  $2$
L-polynomial:  $1 - 8 x - 4 x^{2} - 568 x^{3} + 5041 x^{4}$
Frobenius angles:  $\pm0.0386966968237$, $\pm0.673288635073$
Angle rank:  $2$ (numerical)
Number field:  4.0.55552.1
Galois group:  $D_{4}$
Jacobians:  $36$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4462$ $25049668$ $127274842078$ $645673128262288$ $3255180173236265182$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $64$ $4970$ $355600$ $25408518$ $1804194224$ $128099039978$ $9095119923968$ $645753520391614$ $45848500101198208$ $3255243552166026890$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{71}$.

Endomorphism algebra over $\F_{71}$
The endomorphism algebra of this simple isogeny class is 4.0.55552.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.71.i_ae$2$(not in LMFDB)