Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 8 x - 4 x^{2} - 568 x^{3} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.0386966968237$, $\pm0.673288635073$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.55552.1 |
Galois group: | $D_{4}$ |
Jacobians: | $36$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4462$ | $25049668$ | $127274842078$ | $645673128262288$ | $3255180173236265182$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $64$ | $4970$ | $355600$ | $25408518$ | $1804194224$ | $128099039978$ | $9095119923968$ | $645753520391614$ | $45848500101198208$ | $3255243552166026890$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=49 x^6+69 x^5+33 x^4+42 x^3+43 x^2+52 x+9$
- $y^2=49 x^6+20 x^5+36 x^4+48 x^3+17 x^2+3 x+53$
- $y^2=61 x^6+30 x^5+17 x^4+36 x^3+54 x^2+15 x+65$
- $y^2=14 x^6+17 x^5+4 x^4+50 x^3+17 x^2+47 x+44$
- $y^2=21 x^6+22 x^5+35 x^4+41 x^3+27 x^2+40 x+34$
- $y^2=18 x^6+56 x^5+22 x^4+25 x^3+31 x^2+53 x+3$
- $y^2=23 x^6+10 x^5+57 x^4+30 x^3+50 x^2+65 x+63$
- $y^2=26 x^6+26 x^5+32 x^4+16 x^3+70 x^2+9 x+46$
- $y^2=68 x^6+61 x^5+38 x^4+26 x^3+60 x^2+3 x+56$
- $y^2=48 x^6+27 x^5+42 x^4+9 x^3+33 x^2+56 x+58$
- $y^2=28 x^6+7 x^5+35 x^4+68 x^3+65 x^2+52 x+62$
- $y^2=55 x^6+54 x^5+41 x^4+30 x^3+4 x^2+59 x+46$
- $y^2=51 x^6+49 x^5+33 x^4+23 x^3+34 x^2+19 x+60$
- $y^2=13 x^6+62 x^5+53 x^4+54 x^3+46 x^2+37 x+55$
- $y^2=30 x^6+60 x^5+19 x^4+57 x^3+45 x^2+32 x+64$
- $y^2=62 x^6+58 x^5+50 x^4+69 x^3+51 x^2+10 x+21$
- $y^2=36 x^6+56 x^5+49 x^4+35 x^3+29 x^2+5 x+49$
- $y^2=67 x^6+33 x^5+51 x^4+62 x^3+9 x^2+14 x+33$
- $y^2=18 x^6+31 x^5+54 x^4+37 x^3+45 x^2+7 x+70$
- $y^2=38 x^6+56 x^5+28 x^4+43 x^3+68 x^2+52 x+33$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is 4.0.55552.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.i_ae | $2$ | (not in LMFDB) |