Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 2 x + 138 x^{2} - 142 x^{3} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.438494431152$, $\pm0.523368104508$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.1931600.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $72$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5036$ | $26811664$ | $128241845756$ | $645325007469824$ | $3255172462242651676$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $70$ | $5314$ | $358306$ | $25394814$ | $1804189950$ | $128101217698$ | $9095123082010$ | $645753487668414$ | $45848500559056726$ | $3255243552412759554$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=65 x^6+50 x^5+22 x^4+45 x^3+4 x^2+64 x+43$
- $y^2=68 x^6+53 x^5+58 x^4+14 x^3+63 x^2+49 x+15$
- $y^2=38 x^6+19 x^5+70 x^4+52 x^3+47 x^2+52 x+40$
- $y^2=43 x^6+x^5+38 x^4+20 x^3+59 x^2+65 x+25$
- $y^2=38 x^6+16 x^5+31 x^4+57 x^3+64 x^2+23 x+54$
- $y^2=28 x^6+41 x^5+40 x^3+47 x^2+33 x+27$
- $y^2=48 x^6+48 x^5+21 x^4+68 x^3+67 x^2+61 x+7$
- $y^2=13 x^6+65 x^5+25 x^4+31 x^3+12 x^2+63 x+36$
- $y^2=52 x^6+10 x^5+12 x^4+54 x^3+19 x^2+31 x+29$
- $y^2=10 x^6+26 x^5+57 x^4+33 x^3+42 x^2+56 x+16$
- $y^2=68 x^6+33 x^5+43 x^4+x^3+52 x^2+28 x+40$
- $y^2=69 x^6+15 x^5+62 x^4+35 x^3+38 x^2+11 x+6$
- $y^2=65 x^6+4 x^5+63 x^4+4 x^3+41 x^2+43 x+17$
- $y^2=29 x^6+55 x^5+26 x^4+68 x^3+15 x^2+24 x+59$
- $y^2=65 x^6+18 x^5+56 x^4+59 x^3+8 x^2+53 x+45$
- $y^2=65 x^6+21 x^5+62 x^4+36 x^3+32 x^2+13 x+53$
- $y^2=40 x^6+9 x^5+51 x^4+65 x^3+17 x^2+24 x$
- $y^2=47 x^6+49 x^5+54 x^4+43 x^3+63 x^2+35 x+3$
- $y^2=15 x^6+63 x^5+48 x^4+28 x^3+40 x^2+53 x+39$
- $y^2=28 x^6+40 x^5+51 x^4+63 x^3+70 x^2+46 x+11$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is 4.0.1931600.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.c_fi | $2$ | (not in LMFDB) |