Invariants
Base field: | $\F_{7}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x + 8 x^{2} + 14 x^{3} + 49 x^{4}$ |
Frobenius angles: | $\pm0.399330131425$, $\pm0.741942210950$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.291648.1 |
Galois group: | $D_{4}$ |
Jacobians: | $4$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $74$ | $3108$ | $118178$ | $5930064$ | $275524274$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $10$ | $62$ | $346$ | $2470$ | $16390$ | $117326$ | $826486$ | $5764030$ | $40356634$ | $282450062$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=4 x^6+4 x^5+3 x^4+5 x^3+6 x^2+2$
- $y^2=x^5+4 x^4+4 x^3+4 x^2+6 x$
- $y^2=x^6+x^5+3 x^4+2 x^3+3 x^2+3 x+4$
- $y^2=x^6+x^5+6 x^4+4 x^3+5 x+6$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{7}$.
Endomorphism algebra over $\F_{7}$The endomorphism algebra of this simple isogeny class is 4.0.291648.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.7.ac_i | $2$ | 2.49.m_ec |