Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 8 x + 34 x^{2} + 536 x^{3} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.364283896822$, $\pm0.858079345533$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.9311552.3 |
| Galois group: | $D_{4}$ |
| Jacobians: | $154$ |
| Isomorphism classes: | 220 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5068$ | $20170640$ | $90851446252$ | $406130188620800$ | $1822693087439540428$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $76$ | $4494$ | $302068$ | $20154222$ | $1350017916$ | $90458417406$ | $6060707452708$ | $406067753118558$ | $27206534395286956$ | $1822837804058348014$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 154 curves (of which all are hyperelliptic):
- $y^2=x^6+2 x^5+35 x^4+33 x^3+19 x^2+63 x+48$
- $y^2=19 x^6+21 x^5+6 x^4+5 x^3+64 x^2+16 x+19$
- $y^2=15 x^6+38 x^5+6 x^4+52 x^3+25 x^2+19 x+47$
- $y^2=6 x^6+53 x^5+50 x^4+26 x^3+58 x^2+16 x+11$
- $y^2=46 x^6+48 x^5+45 x^4+14 x^3+25 x^2+9 x+57$
- $y^2=28 x^6+23 x^5+3 x^4+8 x^3+16 x^2+24 x+6$
- $y^2=57 x^6+48 x^5+43 x^4+40 x^2+34 x+19$
- $y^2=24 x^6+62 x^5+46 x^4+52 x^3+56 x^2+54 x+30$
- $y^2=38 x^6+55 x^5+49 x^4+21 x^3+7 x^2+39 x+12$
- $y^2=11 x^6+19 x^5+23 x^4+8 x^3+61 x^2+51 x+16$
- $y^2=47 x^6+32 x^5+64 x^4+4 x^3+18 x^2+45 x+46$
- $y^2=52 x^6+58 x^5+17 x^4+42 x^3+52 x^2+56 x+47$
- $y^2=39 x^6+11 x^5+64 x^4+30 x^3+38 x^2+63 x+48$
- $y^2=26 x^6+23 x^5+60 x^4+19 x^3+24 x^2+12 x+50$
- $y^2=46 x^6+53 x^5+56 x^4+56 x^3+51 x^2+55 x+17$
- $y^2=6 x^6+52 x^5+12 x^4+26 x^3+66 x^2+26 x+54$
- $y^2=49 x^6+35 x^5+28 x^4+49 x^3+16 x^2+3 x+27$
- $y^2=19 x^6+59 x^5+15 x^4+45 x^3+5 x^2+41 x+1$
- $y^2=5 x^6+63 x^5+6 x^4+53 x^3+44 x^2+18 x+47$
- $y^2=43 x^6+21 x^5+61 x^4+27 x^3+2 x^2+5 x+36$
- and 134 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is 4.0.9311552.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.ai_bi | $2$ | (not in LMFDB) |