Properties

Label 2.67.i_bi
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 + 8 x + 34 x^{2} + 536 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.364283896822$, $\pm0.858079345533$
Angle rank:  $2$ (numerical)
Number field:  4.0.9311552.3
Galois group:  $D_{4}$
Jacobians:  $154$
Isomorphism classes:  220

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5068$ $20170640$ $90851446252$ $406130188620800$ $1822693087439540428$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $76$ $4494$ $302068$ $20154222$ $1350017916$ $90458417406$ $6060707452708$ $406067753118558$ $27206534395286956$ $1822837804058348014$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 154 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is 4.0.9311552.3.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.ai_bi$2$(not in LMFDB)