Properties

Label 2.67.f_eg
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $( 1 - 3 x + 67 x^{2} )( 1 + 8 x + 67 x^{2} )$
  $1 + 5 x + 110 x^{2} + 335 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.441336869475$, $\pm0.662520626193$
Angle rank:  $2$ (numerical)
Jacobians:  $160$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4940$ $21044400$ $90301955120$ $406015922520000$ $1822813873895857700$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $73$ $4685$ $300244$ $20148553$ $1350107383$ $90458052230$ $6060718399669$ $406067697348433$ $27206533740055468$ $1822837804860856925$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 160 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The isogeny class factors as 1.67.ad $\times$ 1.67.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.al_gc$2$(not in LMFDB)
2.67.af_eg$2$(not in LMFDB)
2.67.l_gc$2$(not in LMFDB)