Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 3 x + 67 x^{2} )( 1 + 8 x + 67 x^{2} )$ |
| $1 + 5 x + 110 x^{2} + 335 x^{3} + 4489 x^{4}$ | |
| Frobenius angles: | $\pm0.441336869475$, $\pm0.662520626193$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $160$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4940$ | $21044400$ | $90301955120$ | $406015922520000$ | $1822813873895857700$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $73$ | $4685$ | $300244$ | $20148553$ | $1350107383$ | $90458052230$ | $6060718399669$ | $406067697348433$ | $27206533740055468$ | $1822837804860856925$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 160 curves (of which all are hyperelliptic):
- $y^2=43 x^6+17 x^5+37 x^4+24 x^3+36 x^2+60 x+15$
- $y^2=41 x^6+49 x^5+25 x^4+44 x^3+19 x^2+x+22$
- $y^2=2 x^6+35 x^5+60 x^4+35 x^3+19 x^2+6 x+4$
- $y^2=7 x^6+55 x^5+60 x^4+39 x^3+22 x^2+19 x+11$
- $y^2=30 x^6+17 x^5+10 x^4+42 x^3+4 x^2+16 x+11$
- $y^2=64 x^6+28 x^5+40 x^4+47 x^3+35 x^2+57 x$
- $y^2=8 x^6+57 x^5+40 x^4+63 x^3+10 x^2+62 x+66$
- $y^2=12 x^6+7 x^5+32 x^4+41 x^3+58 x^2+31 x+16$
- $y^2=21 x^6+38 x^5+66 x^2+44 x+36$
- $y^2=33 x^6+17 x^5+14 x^4+29 x^3+11 x^2+34 x+56$
- $y^2=33 x^6+21 x^5+52 x^4+31 x^3+21 x^2+65 x+33$
- $y^2=23 x^6+13 x^5+62 x^4+4 x^3+29 x^2+65 x+38$
- $y^2=33 x^6+59 x^5+24 x^4+36 x^3+32 x^2+49 x+27$
- $y^2=47 x^6+49 x^5+24 x^4+54 x^3+52 x^2+3 x+38$
- $y^2=3 x^6+26 x^5+26 x^4+30 x^3+33 x^2+4 x+34$
- $y^2=9 x^6+6 x^5+34 x^4+43 x^3+5 x^2+23 x+54$
- $y^2=51 x^6+63 x^5+13 x^4+10 x^3+21 x^2+5 x+66$
- $y^2=52 x^6+57 x^5+33 x^4+65 x^3+46 x^2+56 x+45$
- $y^2=28 x^6+17 x^5+62 x^4+7 x^3+55 x^2+7 x+11$
- $y^2=56 x^6+46 x^5+15 x^4+56 x^3+15 x^2+59 x+58$
- and 140 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The isogeny class factors as 1.67.ad $\times$ 1.67.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.al_gc | $2$ | (not in LMFDB) |
| 2.67.af_eg | $2$ | (not in LMFDB) |
| 2.67.l_gc | $2$ | (not in LMFDB) |