Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 3 x + 122 x^{2} + 201 x^{3} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.455623189861$, $\pm0.604428021353$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.51272469.1 |
Galois group: | $D_{4}$ |
Jacobians: | $128$ |
Isomorphism classes: | 128 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4816$ | $21228928$ | $90317819200$ | $405867977270784$ | $1822873086612864496$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $71$ | $4725$ | $300296$ | $20141209$ | $1350151241$ | $90458552310$ | $6060712000043$ | $406067694862129$ | $27206534144713592$ | $1822837802352139125$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 128 curves (of which all are hyperelliptic):
- $y^2=45 x^6+3 x^5+15 x^4+60 x^3+40 x^2+7 x+60$
- $y^2=22 x^6+61 x^5+60 x^4+53 x^3+30 x^2+47 x+24$
- $y^2=51 x^6+23 x^5+49 x^4+56 x^3+41 x^2+17 x+59$
- $y^2=45 x^6+41 x^5+26 x^4+50 x^3+42 x^2+16 x+18$
- $y^2=19 x^6+43 x^5+47 x^4+6 x^3+37 x^2+65 x+48$
- $y^2=61 x^6+8 x^5+52 x^4+13 x^3+x^2+42 x+59$
- $y^2=53 x^6+38 x^5+37 x^4+17 x^3+53 x^2+41 x+16$
- $y^2=22 x^6+47 x^5+34 x^4+33 x^3+25 x^2+24 x$
- $y^2=66 x^6+50 x^5+58 x^4+50 x^3+16 x^2+66 x+39$
- $y^2=18 x^6+55 x^5+64 x^4+63 x^3+16 x^2+38 x+39$
- $y^2=61 x^6+4 x^5+34 x^4+18 x^3+33 x^2+38 x+60$
- $y^2=55 x^6+24 x^5+38 x^4+15 x^3+26 x^2+21 x+48$
- $y^2=14 x^6+23 x^5+43 x^4+33 x^3+21 x^2+62 x+22$
- $y^2=2 x^6+39 x^5+28 x^4+25 x^3+57 x^2+41 x+65$
- $y^2=48 x^6+44 x^5+55 x^4+42 x^3+46 x^2+44 x+2$
- $y^2=53 x^6+55 x^5+22 x^4+63 x^3+50 x^2+10 x+44$
- $y^2=11 x^6+33 x^5+53 x^4+16 x^3+49 x^2+65 x+41$
- $y^2=39 x^6+64 x^5+66 x^4+45 x^3+29 x^2+19 x+37$
- $y^2=33 x^6+32 x^5+17 x^4+34 x^3+50 x^2+8 x+17$
- $y^2=30 x^6+18 x^5+10 x^4+64 x^3+57 x^2+37 x+38$
- and 108 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is 4.0.51272469.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.ad_es | $2$ | (not in LMFDB) |