Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 25 x + 279 x^{2} - 1675 x^{3} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.0801786736356$, $\pm0.311310056841$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.76725.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $16$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3069$ | $19853361$ | $90540836991$ | $406100916175581$ | $1822789878103055664$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $43$ | $4423$ | $301039$ | $20152771$ | $1350089608$ | $90457795987$ | $6060708382849$ | $406067693674963$ | $27206534875826473$ | $1822837809276767878$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=45 x^6+17 x^5+60 x^4+52 x^3+39 x^2+40 x+64$
- $y^2=43 x^6+4 x^5+38 x^4+61 x^3+27 x^2+12 x+43$
- $y^2=28 x^6+62 x^5+53 x^4+17 x^3+21 x^2+57 x+42$
- $y^2=52 x^6+14 x^5+51 x^4+18 x^3+39 x^2+56 x+29$
- $y^2=27 x^6+30 x^5+19 x^4+58 x^3+52 x^2+x+18$
- $y^2=46 x^6+4 x^5+46 x^4+49 x^3+52 x^2+8 x+57$
- $y^2=20 x^6+48 x^5+52 x^4+33 x^3+27 x^2+44 x+54$
- $y^2=46 x^6+22 x^5+25 x^4+66 x^3+33 x^2+22 x+22$
- $y^2=42 x^6+30 x^5+38 x^4+10 x^3+5 x^2+5 x+61$
- $y^2=52 x^6+56 x^5+65 x^4+61 x^3+46 x^2+12 x+33$
- $y^2=30 x^6+31 x^5+35 x^4+21 x^3+54 x^2+16 x+18$
- $y^2=49 x^6+46 x^5+35 x^4+6 x^3+6 x^2+27 x+50$
- $y^2=53 x^6+40 x^5+52 x^4+8 x^3+36 x^2+52 x+7$
- $y^2=2 x^6+10 x^5+41 x^4+62 x^3+30 x^2+27 x+38$
- $y^2=8 x^6+60 x^5+64 x^4+48 x^3+17 x^2+53 x+50$
- $y^2=31 x^6+12 x^5+49 x^4+41 x^3+35 x+16$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is 4.0.76725.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.z_kt | $2$ | (not in LMFDB) |