Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 17 x + 154 x^{2} - 1139 x^{3} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.0894596215017$, $\pm0.475250558157$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.59974013.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $64$ |
| Isomorphism classes: | 64 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3488$ | $20230400$ | $90315635072$ | $405817373312000$ | $1822783847139196128$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $51$ | $4509$ | $300288$ | $20138697$ | $1350085141$ | $90458988726$ | $6060716056383$ | $406067670068433$ | $27206534453811456$ | $1822837809029652589$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=21 x^5+47 x^4+24 x^3+30 x^2+17 x+46$
- $y^2=30 x^6+32 x^5+59 x^4+5 x^3+38 x^2+45 x+41$
- $y^2=61 x^6+6 x^5+x^4+32 x^3+65 x^2+38 x+61$
- $y^2=52 x^6+19 x^5+47 x^2+16 x+8$
- $y^2=2 x^6+3 x^5+34 x^4+29 x^3+36 x^2+65 x+55$
- $y^2=41 x^6+25 x^5+58 x^4+29 x^3+56 x^2+19 x+32$
- $y^2=37 x^6+15 x^5+54 x^4+53 x^3+45 x^2+26 x+28$
- $y^2=58 x^6+60 x^5+30 x^4+48 x^3+16 x^2+8 x+3$
- $y^2=63 x^6+2 x^5+42 x^4+4 x^3+x^2+34$
- $y^2=7 x^6+30 x^5+55 x^4+6 x^3+19 x^2+34 x+15$
- $y^2=43 x^6+6 x^5+48 x^4+45 x^3+18 x^2+25 x+60$
- $y^2=44 x^6+17 x^5+65 x^4+18 x^3+47 x^2+15 x+7$
- $y^2=5 x^6+21 x^5+25 x^4+47 x^3+30 x^2+28 x+4$
- $y^2=49 x^6+45 x^5+48 x^4+35 x^3+54 x^2+53 x+51$
- $y^2=48 x^6+17 x^5+35 x^4+14 x^3+61 x^2+41 x+54$
- $y^2=27 x^6+48 x^5+12 x^4+18 x^3+20 x^2+59 x+46$
- $y^2=5 x^6+26 x^5+52 x^4+64 x^3+55 x^2+30 x+43$
- $y^2=7 x^6+33 x^5+43 x^4+11 x^3+26 x^2+59 x+3$
- $y^2=16 x^6+59 x^5+51 x^4+57 x^3+10 x^2+5 x+51$
- $y^2=4 x^6+2 x^5+65 x^4+42 x^3+17 x^2+59 x+2$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is 4.0.59974013.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.r_fy | $2$ | (not in LMFDB) |