Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 11 x + 83 x^{2} - 737 x^{3} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.153077113470$, $\pm0.568859213459$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.30589.1 |
Galois group: | $D_{4}$ |
Jacobians: | $119$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3825$ | $20352825$ | $90217563075$ | $406012908898125$ | $1822998859105230000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $57$ | $4535$ | $299961$ | $20148403$ | $1350244392$ | $90459126155$ | $6060711489351$ | $406067714648083$ | $27206534826777627$ | $1822837802783260550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 119 curves (of which all are hyperelliptic):
- $y^2=9 x^6+21 x^5+47 x^4+66 x^3+55 x^2+11 x+28$
- $y^2=36 x^6+33 x^5+26 x^4+45 x^3+16 x^2+8 x+31$
- $y^2=55 x^6+42 x^5+x^4+14 x^3+61 x^2+49 x+14$
- $y^2=58 x^6+17 x^5+60 x^4+26 x^3+38 x^2+48$
- $y^2=50 x^6+31 x^5+47 x^4+2 x^3+66 x^2+32 x+51$
- $y^2=65 x^6+17 x^5+58 x^4+60 x^3+60 x^2+27 x+23$
- $y^2=33 x^6+18 x^5+29 x^4+66 x^3+28 x^2+13 x+21$
- $y^2=10 x^6+63 x^5+33 x^4+59 x^3+26 x^2+43 x+34$
- $y^2=52 x^6+34 x^5+61 x^4+49 x^3+44 x^2+16 x+38$
- $y^2=63 x^6+13 x^5+36 x^4+44 x^3+37 x^2+16 x+41$
- $y^2=5 x^6+28 x^5+65 x^4+15 x^3+18 x^2+49 x+46$
- $y^2=28 x^6+22 x^5+3 x^4+25 x^3+65 x^2+50 x+26$
- $y^2=7 x^6+65 x^5+51 x^4+39 x^3+15 x^2+17 x+13$
- $y^2=45 x^6+48 x^5+23 x^4+9 x^3+56 x^2+24 x+27$
- $y^2=52 x^6+15 x^5+35 x^4+48 x^3+2 x^2+4 x+11$
- $y^2=42 x^6+17 x^5+18 x^4+35 x^3+17 x^2+27 x+44$
- $y^2=18 x^6+5 x^5+5 x^4+62 x^3+9 x^2+58 x+58$
- $y^2=63 x^6+60 x^5+30 x^4+23 x^3+39 x^2+53 x+54$
- $y^2=57 x^6+38 x^5+26 x^4+43 x^3+63 x^2+26 x+1$
- $y^2=27 x^6+19 x^5+42 x^4+38 x^3+34 x^2+9 x+58$
- and 99 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is 4.0.30589.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.l_df | $2$ | (not in LMFDB) |