Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 10 x + 142 x^{2} - 670 x^{3} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.311844092969$, $\pm0.482941614994$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.3567416.1 |
Galois group: | $D_{4}$ |
Jacobians: | $168$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3952$ | $20993024$ | $90835127344$ | $406019863248896$ | $1822793185881674032$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $58$ | $4674$ | $302014$ | $20148750$ | $1350092058$ | $90458400018$ | $6060709276414$ | $406067640237534$ | $27206534514128698$ | $1822837809388922914$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 168 curves (of which all are hyperelliptic):
- $y^2=43 x^6+34 x^5+61 x^4+17 x^3+34 x^2+31 x+62$
- $y^2=37 x^6+55 x^5+7 x^4+61 x^3+66 x^2+19 x+61$
- $y^2=45 x^6+35 x^5+20 x^4+x^3+20 x^2+42 x+37$
- $y^2=35 x^6+31 x^5+40 x^4+56 x^3+15 x^2+40 x+13$
- $y^2=5 x^5+46 x^4+62 x^3+30 x^2+46 x+39$
- $y^2=39 x^6+11 x^5+53 x^3+11 x^2+24 x+34$
- $y^2=8 x^6+65 x^5+56 x^4+48 x^3+12 x^2+26 x+62$
- $y^2=3 x^6+52 x^5+56 x^4+9 x^3+30 x^2+34 x+15$
- $y^2=19 x^6+32 x^5+61 x^4+54 x^3+4 x^2+38 x+50$
- $y^2=65 x^6+27 x^5+55 x^4+17 x^3+8 x^2+35 x+7$
- $y^2=50 x^6+5 x^5+66 x^4+34 x^3+30 x^2+55 x+8$
- $y^2=13 x^6+11 x^5+25 x^4+14 x^3+36 x^2+35 x+44$
- $y^2=26 x^6+35 x^5+57 x^4+25 x^3+38 x^2+47 x+14$
- $y^2=43 x^6+65 x^5+53 x^4+3 x^3+57 x^2+53 x+4$
- $y^2=20 x^6+59 x^5+4 x^4+57 x^3+44 x^2+27 x+37$
- $y^2=26 x^6+15 x^5+27 x^4+20 x^3+38 x^2+60 x+66$
- $y^2=7 x^6+3 x^5+25 x^4+52 x^3+57 x^2+59 x+46$
- $y^2=22 x^6+59 x^5+49 x^4+29 x^3+63 x^2+45 x+1$
- $y^2=30 x^6+x^5+59 x^4+37 x^3+9 x^2+23 x+44$
- $y^2=10 x^6+54 x^5+42 x^4+61 x^3+25 x^2+31 x+21$
- and 148 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is 4.0.3567416.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.k_fm | $2$ | (not in LMFDB) |