Properties

Label 2.67.ak_fm
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 - 10 x + 142 x^{2} - 670 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.311844092969$, $\pm0.482941614994$
Angle rank:  $2$ (numerical)
Number field:  4.0.3567416.1
Galois group:  $D_{4}$
Jacobians:  $168$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3952$ $20993024$ $90835127344$ $406019863248896$ $1822793185881674032$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $58$ $4674$ $302014$ $20148750$ $1350092058$ $90458400018$ $6060709276414$ $406067640237534$ $27206534514128698$ $1822837809388922914$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 168 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is 4.0.3567416.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.k_fm$2$(not in LMFDB)