Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 4 x + 67 x^{2} )( 1 - 2 x + 67 x^{2} )$ |
| $1 - 6 x + 142 x^{2} - 402 x^{3} + 4489 x^{4}$ | |
| Frobenius angles: | $\pm0.421429069538$, $\pm0.461014866847$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $80$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4224$ | $21288960$ | $90800341632$ | $405808452403200$ | $1822687128119282304$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $62$ | $4738$ | $301898$ | $20138254$ | $1350013502$ | $90458882386$ | $6060720191210$ | $406067670940126$ | $27206533839486206$ | $1822837803356510818$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 80 curves (of which all are hyperelliptic):
- $y^2=2 x^6+46 x^5+20 x^4+28 x^3+57 x^2+45 x+50$
- $y^2=49 x^6+36 x^5+64 x^4+14 x^3+64 x^2+36 x+49$
- $y^2=64 x^6+20 x^5+49 x^4+5 x^3+49 x^2+20 x+64$
- $y^2=34 x^6+26 x^5+5 x^4+59 x^3+2 x^2+39 x+7$
- $y^2=2 x^6+21 x^5+33 x^4+26 x^3+33 x^2+21 x+2$
- $y^2=18 x^6+29 x^5+4 x^4+44 x^3+49 x^2+x+18$
- $y^2=60 x^6+11 x^5+42 x^4+21 x^3+42 x^2+11 x+60$
- $y^2=43 x^6+42 x^5+30 x^4+29 x^3+30 x^2+42 x+43$
- $y^2=5 x^6+66 x^5+32 x^4+40 x^3+32 x^2+66 x+5$
- $y^2=62 x^6+21 x^5+5 x^4+2 x^3+5 x^2+21 x+62$
- $y^2=57 x^6+x^5+42 x^4+24 x^3+42 x^2+x+57$
- $y^2=31 x^6+52 x^5+52 x^4+57 x^3+52 x^2+52 x+31$
- $y^2=7 x^6+22 x^5+5 x^4+17 x^3+44 x^2+26 x+46$
- $y^2=19 x^6+46 x^5+52 x^4+11 x^3+52 x^2+46 x+19$
- $y^2=39 x^6+47 x^5+66 x^4+27 x^3+66 x^2+47 x+39$
- $y^2=41 x^6+43 x^5+18 x^4+45 x^3+18 x^2+43 x+41$
- $y^2=52 x^6+20 x^5+51 x^3+61 x+3$
- $y^2=24 x^6+x^5+47 x^4+8 x^3+47 x^2+x+24$
- $y^2=29 x^6+58 x^5+24 x^4+52 x^3+19 x^2+31 x+36$
- $y^2=14 x^6+50 x^5+x^4+50 x^3+29 x^2+41 x+14$
- and 60 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The isogeny class factors as 1.67.ae $\times$ 1.67.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.ac_ew | $2$ | (not in LMFDB) |
| 2.67.c_ew | $2$ | (not in LMFDB) |
| 2.67.g_fm | $2$ | (not in LMFDB) |