Properties

Label 2.67.ag_fm
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $( 1 - 4 x + 67 x^{2} )( 1 - 2 x + 67 x^{2} )$
  $1 - 6 x + 142 x^{2} - 402 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.421429069538$, $\pm0.461014866847$
Angle rank:  $2$ (numerical)
Jacobians:  $80$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4224$ $21288960$ $90800341632$ $405808452403200$ $1822687128119282304$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $62$ $4738$ $301898$ $20138254$ $1350013502$ $90458882386$ $6060720191210$ $406067670940126$ $27206533839486206$ $1822837803356510818$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 80 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The isogeny class factors as 1.67.ae $\times$ 1.67.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.ac_ew$2$(not in LMFDB)
2.67.c_ew$2$(not in LMFDB)
2.67.g_fm$2$(not in LMFDB)