Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 16 x + 67 x^{2} )( 1 - 15 x + 67 x^{2} )$ |
| $1 - 31 x + 374 x^{2} - 2077 x^{3} + 4489 x^{4}$ | |
| Frobenius angles: | $\pm0.0678686046652$, $\pm0.131184157393$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $0$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2756$ | $19214832$ | $90086353136$ | $405962746547904$ | $1822836508553125676$ |
Point counts of the (virtual) curve
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $37$ | $4277$ | $299524$ | $20145913$ | $1350124147$ | $90458681222$ | $6060715982617$ | $406067722794481$ | $27206534787005308$ | $1822837807494023957$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The isogeny class factors as 1.67.aq $\times$ 1.67.ap and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.