Properties

Label 2.67.abd_nd
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 - 29 x + 341 x^{2} - 1943 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.0290076283489$, $\pm0.217444192611$
Angle rank:  $2$ (numerical)
Number field:  4.0.40053.1
Galois group:  $D_{4}$
Jacobians:  $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2859$ $19449777$ $90292729293$ $406064605945869$ $1822844223778433424$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $39$ $4331$ $300213$ $20150971$ $1350129864$ $90458214743$ $6060707308191$ $406067619951139$ $27206533844397369$ $1822837800592458566$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is 4.0.40053.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.bd_nd$2$(not in LMFDB)