Properties

Label 2.67.abc_mr
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $( 1 - 15 x + 67 x^{2} )( 1 - 13 x + 67 x^{2} )$
  $1 - 28 x + 329 x^{2} - 1876 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.131184157393$, $\pm0.207941879321$
Angle rank:  $2$ (numerical)
Jacobians:  $9$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2915$ $19597545$ $90475676720$ $406238000243625$ $1822982937421226075$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $40$ $4364$ $300820$ $20159572$ $1350232600$ $90459282566$ $6060717052360$ $406067697566308$ $27206534371102060$ $1822837803439942364$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 9 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The isogeny class factors as 1.67.ap $\times$ 1.67.an and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.ac_acj$2$(not in LMFDB)
2.67.c_acj$2$(not in LMFDB)
2.67.bc_mr$2$(not in LMFDB)