Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 5 x^{2} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.255939996192$, $\pm0.744060003808$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{129}, \sqrt{-139})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $220$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4495$ | $20205025$ | $90458314960$ | $406428624005625$ | $1822837805052736975$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $68$ | $4500$ | $300764$ | $20169028$ | $1350125108$ | $90458247750$ | $6060711605324$ | $406067597848708$ | $27206534396294948$ | $1822837805553712500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 220 curves (of which all are hyperelliptic):
- $y^2=65 x^6+39 x^5+43 x^4+28 x^3+22 x^2+25 x+22$
- $y^2=63 x^6+11 x^5+19 x^4+56 x^3+44 x^2+50 x+44$
- $y^2=10 x^6+66 x^5+48 x^4+18 x^3+56 x^2+11 x+64$
- $y^2=20 x^6+65 x^5+29 x^4+36 x^3+45 x^2+22 x+61$
- $y^2=14 x^6+13 x^5+60 x^4+15 x^3+61 x^2+41 x+18$
- $y^2=28 x^6+26 x^5+53 x^4+30 x^3+55 x^2+15 x+36$
- $y^2=20 x^6+12 x^5+63 x^4+54 x^3+66 x^2+8 x+50$
- $y^2=40 x^6+24 x^5+59 x^4+41 x^3+65 x^2+16 x+33$
- $y^2=4 x^6+3 x^5+32 x^4+64 x^3+31 x^2+44 x+4$
- $y^2=8 x^6+6 x^5+64 x^4+61 x^3+62 x^2+21 x+8$
- $y^2=43 x^6+32 x^5+50 x^4+54 x^3+25 x^2+24 x+44$
- $y^2=19 x^6+64 x^5+33 x^4+41 x^3+50 x^2+48 x+21$
- $y^2=32 x^6+12 x^5+8 x^4+7 x^3+46 x^2+x+56$
- $y^2=64 x^6+24 x^5+16 x^4+14 x^3+25 x^2+2 x+45$
- $y^2=57 x^6+45 x^5+26 x^4+9 x^3+53 x^2+53 x+36$
- $y^2=47 x^6+23 x^5+52 x^4+18 x^3+39 x^2+39 x+5$
- $y^2=39 x^6+32 x^5+4 x^4+16 x^3+43 x^2+49 x+20$
- $y^2=11 x^6+64 x^5+8 x^4+32 x^3+19 x^2+31 x+40$
- $y^2=32 x^6+56 x^5+16 x^3+40 x+56$
- $y^2=30 x^6+47 x^5+55 x^4+40 x^3+33 x^2+31 x+66$
- and 200 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{2}}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{129}, \sqrt{-139})\). |
| The base change of $A$ to $\F_{67^{2}}$ is 1.4489.f 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-17931}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.a_af | $4$ | (not in LMFDB) |