Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 6 x + 67 x^{2} )( 1 + 6 x + 67 x^{2} )$ |
$1 + 98 x^{2} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.380553124364$, $\pm0.619446875636$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $56$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4588$ | $21049744$ | $90458003596$ | $406042489046016$ | $1822837802339964268$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $68$ | $4686$ | $300764$ | $20149870$ | $1350125108$ | $90457625022$ | $6060711605324$ | $406067757377374$ | $27206534396294948$ | $1822837800128167086$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=23 x^6+20 x^5+34 x^4+25 x^3+41 x^2+62 x+37$
- $y^2=46 x^6+40 x^5+x^4+50 x^3+15 x^2+57 x+7$
- $y^2=3 x^6+61 x^5+38 x^4+40 x^3+21 x^2+48 x+22$
- $y^2=3 x^6+61 x^5+60 x^4+66 x^3+17 x^2+7 x+42$
- $y^2=6 x^6+55 x^5+53 x^4+65 x^3+34 x^2+14 x+17$
- $y^2=28 x^6+51 x^5+30 x^4+56 x^3+22 x^2+31 x+6$
- $y^2=8 x^6+56 x^5+55 x^4+60 x^3+4 x^2+8 x+23$
- $y^2=16 x^6+45 x^5+43 x^4+53 x^3+8 x^2+16 x+46$
- $y^2=25 x^6+39 x^5+31 x^4+23 x^3+x^2+25 x+52$
- $y^2=2 x^6+62 x^5+50 x^4+19 x^3+25 x^2+46 x$
- $y^2=4 x^6+57 x^5+33 x^4+38 x^3+50 x^2+25 x$
- $y^2=7 x^6+49 x^5+x^4+2 x^3+20 x^2+36 x+55$
- $y^2=48 x^6+54 x^5+17 x^4+46 x^3+20 x^2+14 x+65$
- $y^2=23 x^6+51 x^5+33 x^4+6 x^3+7 x^2+53 x+54$
- $y^2=46 x^6+35 x^5+66 x^4+12 x^3+14 x^2+39 x+41$
- $y^2=17 x^5+49 x^4+47 x^3+5 x^2+4 x$
- $y^2=45 x^6+35 x^4+3 x^2+25$
- $y^2=24 x^6+44 x^4+21 x^2+58$
- $y^2=51 x^6+64 x^5+25 x^4+41 x^3+59 x^2+15 x+63$
- $y^2=35 x^6+61 x^5+50 x^4+15 x^3+51 x^2+30 x+59$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{2}}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.ag $\times$ 1.67.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{67^{2}}$ is 1.4489.du 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-58}) \)$)$ |
Base change
This is a primitive isogeny class.