Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 74 x^{2} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.343113167767$, $\pm0.656886832233$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-13}, \sqrt{15})\) |
Galois group: | $C_2^2$ |
Jacobians: | $332$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4564$ | $20830096$ | $90457790836$ | $406208868581376$ | $1822837805131430164$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $68$ | $4638$ | $300764$ | $20158126$ | $1350125108$ | $90457199502$ | $6060711605324$ | $406067733633118$ | $27206534396294948$ | $1822837805711098878$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 332 curves (of which all are hyperelliptic):
- $y^2=6 x^6+55 x^5+52 x^4+17 x^2+23 x+51$
- $y^2=15 x^6+26 x^5+39 x^4+22 x^3+48 x^2+60 x+43$
- $y^2=26 x^6+44 x^5+60 x^4+54 x^3+38 x^2+9 x+22$
- $y^2=52 x^6+21 x^5+53 x^4+41 x^3+9 x^2+18 x+44$
- $y^2=31 x^6+34 x^5+11 x^4+54 x^3+4 x^2+20 x+55$
- $y^2=28 x^6+30 x^5+51 x^4+22 x^3+66 x^2+42 x+54$
- $y^2=56 x^6+60 x^5+35 x^4+44 x^3+65 x^2+17 x+41$
- $y^2=16 x^6+47 x^5+18 x^4+26 x^3+38 x^2+44 x+6$
- $y^2=32 x^6+27 x^5+36 x^4+52 x^3+9 x^2+21 x+12$
- $y^2=59 x^6+38 x^5+52 x^4+32 x^3+29 x^2+53 x+3$
- $y^2=22 x^6+6 x^5+42 x^4+26 x^3+21 x^2+28 x+26$
- $y^2=44 x^6+12 x^5+17 x^4+52 x^3+42 x^2+56 x+52$
- $y^2=33 x^6+26 x^5+22 x^4+33 x^3+30 x^2+19 x+20$
- $y^2=11 x^6+23 x^5+31 x^4+66 x^3+38 x^2+49 x+12$
- $y^2=31 x^6+49 x^5+63 x^4+65 x^3+53 x^2+62 x+5$
- $y^2=62 x^6+31 x^5+59 x^4+63 x^3+39 x^2+57 x+10$
- $y^2=x^6+39 x^5+55 x^4+6 x^3+60 x^2+36 x+55$
- $y^2=2 x^6+11 x^5+43 x^4+12 x^3+53 x^2+5 x+43$
- $y^2=50 x^6+27 x^5+61 x^4+45 x^3+7 x^2+48 x+3$
- $y^2=33 x^6+54 x^5+55 x^4+23 x^3+14 x^2+29 x+6$
- and 312 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{2}}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-13}, \sqrt{15})\). |
The base change of $A$ to $\F_{67^{2}}$ is 1.4489.cw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-195}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.a_acw | $4$ | (not in LMFDB) |