Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 12 x + 130 x^{2} + 732 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.514442503533$, $\pm0.757174879888$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.5560128.1 |
Galois group: | $D_{4}$ |
Jacobians: | $168$ |
Isomorphism classes: | 216 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4596$ | $14284368$ | $51349310964$ | $191708560253952$ | $713315557972716756$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $74$ | $3838$ | $226226$ | $13845934$ | $844563914$ | $51520872814$ | $3142743810770$ | $191707259867230$ | $11694146359326410$ | $713342912803626718$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 168 curves (of which all are hyperelliptic):
- $y^2=40 x^6+23 x^5+7 x^4+25 x^3+56 x^2+48 x+41$
- $y^2=21 x^6+38 x^5+21 x^4+16 x^3+50 x^2+44 x+44$
- $y^2=15 x^6+8 x^5+31 x^4+56 x^3+43 x^2+40 x+27$
- $y^2=45 x^6+55 x^5+9 x^4+49 x^3+27 x^2+36 x+34$
- $y^2=41 x^6+20 x^5+42 x^4+47 x^3+22 x^2+20 x+31$
- $y^2=22 x^6+42 x^5+10 x^4+38 x^3+58 x^2+42 x+13$
- $y^2=44 x^6+2 x^5+15 x^4+47 x^3+23 x^2+7 x+44$
- $y^2=34 x^6+57 x^5+6 x^4+21 x^3+10 x^2+57 x+48$
- $y^2=41 x^6+14 x^5+6 x^4+42 x^3+5 x^2+28 x+45$
- $y^2=2 x^6+60 x^5+55 x^4+56 x^3+33 x^2+59 x+60$
- $y^2=22 x^6+42 x^5+46 x^4+x^3+9 x^2+54 x+1$
- $y^2=58 x^6+37 x^5+45 x^4+26 x^3+20 x^2+8 x+24$
- $y^2=17 x^6+55 x^5+22 x^4+15 x^3+49 x^2+55 x+56$
- $y^2=47 x^6+42 x^5+28 x^4+23 x^3+45 x^2+48 x+43$
- $y^2=26 x^6+8 x^5+41 x^4+18 x^3+x^2+45 x+54$
- $y^2=58 x^6+22 x^5+31 x^4+14 x^3+58 x^2+27 x+3$
- $y^2=15 x^6+45 x^5+33 x^4+37 x^3+13 x^2+10 x+35$
- $y^2=8 x^6+43 x^5+35 x^4+2 x^3+16 x^2+23 x+13$
- $y^2=35 x^6+51 x^5+x^4+24 x^3+2 x^2+9 x+47$
- $y^2=41 x^6+46 x^5+52 x^4+58 x^3+40 x^2+42 x+4$
- and 148 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is 4.0.5560128.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.am_fa | $2$ | (not in LMFDB) |