Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 8 x + 30 x^{2} + 488 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.365798978222$, $\pm0.872931241985$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.29952.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $238$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4248$ | $13831488$ | $51806233368$ | $191721906680832$ | $713280488747467608$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $70$ | $3718$ | $228238$ | $13846894$ | $844522390$ | $51520336054$ | $3142740172894$ | $191707367606110$ | $11694146029578214$ | $713342911972815718$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 238 curves (of which all are hyperelliptic):
- $y^2=15 x^6+24 x^5+10 x^4+3 x^3+22 x^2+2 x+40$
- $y^2=55 x^6+36 x^5+33 x^4+30 x^2+42 x+30$
- $y^2=54 x^6+33 x^5+9 x^4+47 x^3+43 x^2+17 x+21$
- $y^2=9 x^6+2 x^5+52 x^4+56 x^3+5 x^2+34 x+16$
- $y^2=48 x^6+21 x^5+41 x^4+14 x^3+42 x^2+54 x+47$
- $y^2=44 x^5+44 x^4+56 x^3+29 x^2+9 x+57$
- $y^2=3 x^6+41 x^5+48 x^4+41 x^3+38 x^2+18 x+56$
- $y^2=27 x^6+43 x^5+8 x^4+43 x^3+27 x^2+13 x+49$
- $y^2=48 x^6+5 x^5+7 x^4+33 x^3+44 x^2+24 x+6$
- $y^2=4 x^5+58 x^4+34 x^3+34$
- $y^2=34 x^6+22 x^5+37 x^4+6 x^3+18 x^2+24 x+23$
- $y^2=6 x^6+15 x^5+10 x^4+7 x^3+55 x^2+3 x+46$
- $y^2=47 x^6+59 x^5+33 x^4+29 x^3+7 x^2+6 x+6$
- $y^2=33 x^6+32 x^5+7 x^4+3 x^3+27 x^2+20 x$
- $y^2=42 x^6+28 x^5+27 x^4+x^3+18 x^2+16 x+35$
- $y^2=32 x^6+46 x^5+13 x^4+8 x^3+43 x^2+30 x+31$
- $y^2=42 x^6+14 x^5+33 x^4+45 x^3+37 x^2+55 x+39$
- $y^2=58 x^6+7 x^5+35 x^4+9 x^3+13 x^2+60 x+36$
- $y^2=53 x^6+35 x^5+60 x^4+22 x^3+25 x^2+47 x+48$
- $y^2=14 x^6+30 x^5+44 x^4+56 x^3+58 x^2+37 x+25$
- and 218 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is 4.0.29952.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.ai_be | $2$ | (not in LMFDB) |