Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 6 x + 6 x^{2} + 366 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.324554048754$, $\pm0.862241771468$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.7600.1 |
Galois group: | $D_{4}$ |
Jacobians: | $222$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4100$ | $13759600$ | $51794812100$ | $191784827257600$ | $713297006875062500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $68$ | $3698$ | $228188$ | $13851438$ | $844541948$ | $51520314818$ | $3142736983748$ | $191707347539038$ | $11694146144741588$ | $713342913507682898$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 222 curves (of which all are hyperelliptic):
- $y^2=48 x^6+33 x^5+51 x^4+38 x^3+7 x^2+48 x+13$
- $y^2=7 x^6+45 x^5+13 x^4+26 x^3+57 x^2+10 x+54$
- $y^2=14 x^6+34 x^5+48 x^4+17 x^3+39 x^2+28 x+57$
- $y^2=4 x^6+42 x^4+11 x^3+9 x^2+59 x+1$
- $y^2=25 x^6+50 x^5+19 x^4+22 x^3+17 x^2+16 x+34$
- $y^2=21 x^6+24 x^5+49 x^4+5 x^3+33 x^2+29$
- $y^2=54 x^6+15 x^5+x^4+37 x^3+21 x^2+5 x+46$
- $y^2=x^6+39 x^5+50 x^4+49 x^3+39 x^2+3 x+2$
- $y^2=47 x^6+53 x^5+19 x^4+13 x^3+23 x^2+13 x+17$
- $y^2=25 x^6+31 x^5+32 x^4+24 x^3+37 x^2+54 x+26$
- $y^2=18 x^6+53 x^5+33 x^4+7 x^3+55 x^2+21 x+16$
- $y^2=35 x^6+2 x^5+50 x^4+16 x^3+6 x^2+11 x+46$
- $y^2=24 x^6+41 x^5+36 x^4+35 x^3+53 x^2+55 x+49$
- $y^2=46 x^6+58 x^5+22 x^4+45 x^3+9 x^2+48 x+44$
- $y^2=x^6+18 x^5+40 x^4+15 x^3+39 x^2+42 x+57$
- $y^2=37 x^6+35 x^5+14 x^4+40 x^3+24 x^2+21 x+25$
- $y^2=8 x^6+21 x^5+31 x^4+32 x^3+48 x+9$
- $y^2=28 x^6+38 x^5+7 x^4+31 x^3+33 x^2+35 x+45$
- $y^2=2 x^6+36 x^5+11 x^4+11 x^3+47 x^2+51 x+1$
- $y^2=31 x^6+30 x^5+15 x^4+41 x^3+11 x^2+27 x+3$
- and 202 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is 4.0.7600.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.ag_g | $2$ | (not in LMFDB) |