Properties

Label 2.61.f_ds
Base field $\F_{61}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{61}$
Dimension:  $2$
L-polynomial:  $1 + 5 x + 96 x^{2} + 305 x^{3} + 3721 x^{4}$
Frobenius angles:  $\pm0.434765462292$, $\pm0.675411709767$
Angle rank:  $2$ (numerical)
Number field:  4.0.43083549.1
Galois group:  $D_{4}$
Jacobians:  $112$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4128$ $14481024$ $51429513600$ $191698000065024$ $713319453602240928$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $67$ $3889$ $226582$ $13845169$ $844568527$ $51520078438$ $3142748675707$ $191707323183169$ $11694145674902542$ $713342912094724729$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{61}$.

Endomorphism algebra over $\F_{61}$
The endomorphism algebra of this simple isogeny class is 4.0.43083549.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.af_ds$2$(not in LMFDB)