Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 5 x + 96 x^{2} + 305 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.434765462292$, $\pm0.675411709767$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.43083549.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $112$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4128$ | $14481024$ | $51429513600$ | $191698000065024$ | $713319453602240928$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $67$ | $3889$ | $226582$ | $13845169$ | $844568527$ | $51520078438$ | $3142748675707$ | $191707323183169$ | $11694145674902542$ | $713342912094724729$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=55 x^6+27 x^5+55 x^4+6 x^3+8 x^2+10 x+3$
- $y^2=13 x^6+12 x^5+43 x^4+50 x^3+8 x^2+25 x+23$
- $y^2=44 x^6+22 x^5+5 x^4+48 x^3+35 x^2+54 x+50$
- $y^2=55 x^6+3 x^5+3 x^4+8 x^3+27 x^2+47 x+14$
- $y^2=31 x^6+20 x^5+9 x^4+56 x^3+30 x^2+13 x$
- $y^2=45 x^6+14 x^5+16 x^4+9 x^3+42 x^2+12 x+33$
- $y^2=x^6+26 x^5+14 x^4+12 x^3+24 x^2+44 x+10$
- $y^2=49 x^6+42 x^5+11 x^4+27 x^3+21 x^2+38 x+29$
- $y^2=28 x^6+21 x^5+59 x^4+38 x^3+58 x^2+24 x+35$
- $y^2=56 x^6+30 x^5+30 x^4+24 x^3+37 x^2+36 x+3$
- $y^2=48 x^6+24 x^5+23 x^4+4 x^3+2 x^2+19 x+51$
- $y^2=45 x^6+38 x^5+60 x^4+2 x^3+35 x^2+33 x+4$
- $y^2=14 x^6+3 x^5+4 x^4+34 x^3+33 x^2+34 x$
- $y^2=7 x^6+43 x^5+53 x^4+8 x^3+45 x^2+13 x+4$
- $y^2=12 x^6+18 x^5+41 x^4+28 x^3+59 x^2+35 x+16$
- $y^2=35 x^6+55 x^4+34 x^3+16 x^2+8 x+15$
- $y^2=56 x^6+26 x^5+45 x^4+49 x^3+30 x^2+8 x+34$
- $y^2=47 x^6+58 x^5+48 x^4+47 x^3+56 x+25$
- $y^2=32 x^6+28 x^5+23 x^4+35 x^3+46 x^2+2 x+19$
- $y^2=32 x^6+44 x^5+x^4+9 x^3+10 x^2+25$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is 4.0.43083549.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.af_ds | $2$ | (not in LMFDB) |