Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 3 x - 52 x^{2} + 183 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.228181970425$, $\pm0.894848637092$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-235})\) |
Galois group: | $C_2^2$ |
Jacobians: | $26$ |
Isomorphism classes: | 88 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3856$ | $13434304$ | $51758070016$ | $191781084328704$ | $713383304234276176$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $65$ | $3609$ | $228026$ | $13851169$ | $844644125$ | $51520737318$ | $3142739374385$ | $191707313682529$ | $11694145666402946$ | $713342912260729329$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 26 curves (of which all are hyperelliptic):
- $y^2=22 x^6+43 x^5+18 x^4+31 x^3+43 x^2+45 x+15$
- $y^2=35 x^5+57 x^4+41 x^3+41 x^2+50 x+59$
- $y^2=57 x^6+35 x^5+53 x^4+47 x^3+55 x^2+2 x+32$
- $y^2=20 x^6+16 x^4+51 x^3+12 x^2+15 x+55$
- $y^2=11 x^6+6 x^5+42 x^4+10 x^3+28 x^2+40 x+18$
- $y^2=56 x^6+2 x^5+30 x^4+11 x^3+21 x^2+41 x+17$
- $y^2=34 x^6+17 x^5+35 x^4+37 x^3+43 x^2+47 x+28$
- $y^2=39 x^6+27 x^5+40 x^4+58 x^3+5 x^2+16 x+19$
- $y^2=27 x^6+46 x^5+30 x^4+9 x^3+20 x^2+14 x+28$
- $y^2=35 x^6+48 x^5+33 x^4+59 x^3+26 x^2+44 x+45$
- $y^2=5 x^6+22 x^5+2 x^4+39 x^3+8 x^2+22 x+24$
- $y^2=55 x^6+42 x^5+5 x^4+33 x^3+24 x^2+52 x+13$
- $y^2=23 x^6+x^5+12 x^4+x^3+13 x^2+9 x+16$
- $y^2=7 x^6+56 x^5+45 x^4+32 x^3+15 x^2+43 x+41$
- $y^2=8 x^6+7 x^5+45 x^4+2 x^3+39 x^2+49 x+26$
- $y^2=48 x^6+48 x^5+31 x^4+20 x^3+12 x^2+57 x+36$
- $y^2=51 x^5+24 x^4+10 x^3+41 x^2+27 x+32$
- $y^2=8 x^6+56 x^5+20 x^4+57 x^3+14 x^2+35 x+45$
- $y^2=35 x^6+59 x^5+46 x^4+54 x^3+55 x^2+48 x+24$
- $y^2=24 x^6+30 x^5+6 x^4+31 x^3+40 x^2+41 x+13$
- $y^2=30 x^6+23 x^5+48 x^4+22 x^3+51 x^2+x+8$
- $y^2=52 x^6+35 x^4+52 x^3+58 x^2+9 x+60$
- $y^2=37 x^6+x^5+21 x^4+4 x^3+26 x^2+60 x+35$
- $y^2=9 x^6+31 x^5+33 x^4+2 x^3+46 x^2+18 x+7$
- $y^2=49 x^6+14 x^5+8 x^4+57 x^3+43 x^2+49 x+15$
- $y^2=2 x^6+42 x^5+x^4+31 x^3+4 x^2+5 x+37$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{3}}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-235})\). |
The base change of $A$ to $\F_{61^{3}}$ is 1.226981.uc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-235}) \)$)$ |
Base change
This is a primitive isogeny class.