Properties

Label 2.61.an_fo
Base field $\F_{61}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{61}$
Dimension:  $2$
L-polynomial:  $( 1 - 11 x + 61 x^{2} )( 1 - 2 x + 61 x^{2} )$
  $1 - 13 x + 144 x^{2} - 793 x^{3} + 3721 x^{4}$
Frobenius angles:  $\pm0.251304563322$, $\pm0.459132412189$
Angle rank:  $2$ (numerical)
Jacobians:  $96$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3060$ $14296320$ $51757133760$ $191720570618880$ $713347512467386500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $49$ $3841$ $228022$ $13846801$ $844601749$ $51520688998$ $3142743032569$ $191707270995841$ $11694145747750702$ $713342912210106601$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{61}$.

Endomorphism algebra over $\F_{61}$
The isogeny class factors as 1.61.al $\times$ 1.61.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.aj_dw$2$(not in LMFDB)
2.61.j_dw$2$(not in LMFDB)
2.61.n_fo$2$(not in LMFDB)