Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 8 x + 90 x^{2} - 488 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.253358645779$, $\pm0.560025175002$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.263952.2 |
Galois group: | $D_{4}$ |
Jacobians: | $256$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3316$ | $14285328$ | $51562238164$ | $191735158198272$ | $713415476138138356$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $3838$ | $227166$ | $13847854$ | $844682214$ | $51520538734$ | $3142736716110$ | $191707283682910$ | $11694146169646230$ | $713342911317527518$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 256 curves (of which all are hyperelliptic):
- $y^2=49 x^6+x^5+20 x^4+57 x^3+59 x^2+34 x+3$
- $y^2=22 x^6+12 x^5+19 x^4+x^3+3 x^2+6 x+15$
- $y^2=53 x^6+41 x^5+59 x^4+13 x^3+3 x^2+16 x+35$
- $y^2=57 x^6+14 x^5+35 x^4+20 x^3+3 x^2+54 x+55$
- $y^2=5 x^6+58 x^5+59 x^4+27 x^3+40 x^2+10 x+10$
- $y^2=4 x^6+6 x^5+44 x^4+14 x^3+19 x^2+54 x+59$
- $y^2=60 x^6+34 x^5+25 x^4+51 x^3+9 x^2+24 x+26$
- $y^2=14 x^6+52 x^5+38 x^4+8 x^3+23 x^2+45 x+34$
- $y^2=39 x^6+46 x^5+2 x^4+26 x^3+52 x^2+44 x+21$
- $y^2=3 x^6+28 x^5+3 x^4+3 x^3+23 x^2+20 x+47$
- $y^2=13 x^6+28 x^5+5 x^4+41 x^3+57 x^2+13 x+40$
- $y^2=12 x^6+49 x^5+29 x^4+2 x^3+24 x^2+10 x+24$
- $y^2=11 x^6+57 x^5+26 x^4+x^3+32 x+28$
- $y^2=53 x^6+16 x^5+29 x^4+4 x^3+28 x^2+27 x+8$
- $y^2=44 x^6+10 x^5+26 x^4+19 x^3+40 x^2+33 x+20$
- $y^2=6 x^6+10 x^5+29 x^4+19 x^3+18 x^2+24 x+19$
- $y^2=54 x^6+48 x^5+20 x^4+30 x^3+20 x^2+52 x+50$
- $y^2=x^6+33 x^5+58 x^4+2 x^3+49 x^2+58 x+58$
- $y^2=20 x^6+24 x^5+19 x^4+20 x^3+43 x^2+17 x+28$
- $y^2=7 x^6+27 x^5+55 x^4+11 x^3+10 x^2+43 x+47$
- and 236 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is 4.0.263952.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.i_dm | $2$ | (not in LMFDB) |