Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 23 x^{2} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.280185259663$, $\pm0.719814740337$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{11}, \sqrt{-145})\) |
Galois group: | $C_2^2$ |
Jacobians: | $168$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3745$ | $14025025$ | $51520129780$ | $191898821090025$ | $713342913035223625$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $62$ | $3768$ | $226982$ | $13859668$ | $844596302$ | $51519885198$ | $3142742836022$ | $191707272801508$ | $11694146092834142$ | $713342914407564648$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 168 curves (of which all are hyperelliptic):
- $y^2=53 x^6+39 x^5+12 x^4+16 x^3+3 x^2+32 x+4$
- $y^2=45 x^6+17 x^5+24 x^4+32 x^3+6 x^2+3 x+8$
- $y^2=24 x^6+55 x^5+26 x^4+10 x^3+4 x^2+54 x+19$
- $y^2=48 x^6+49 x^5+52 x^4+20 x^3+8 x^2+47 x+38$
- $y^2=60 x^6+15 x^5+36 x^4+25 x^3+17 x^2+45 x+24$
- $y^2=24 x^6+47 x^5+51 x^4+42 x^3+49 x^2+14 x+20$
- $y^2=35 x^6+49 x^5+11 x^4+44 x^3+24 x^2+47 x+33$
- $y^2=9 x^6+37 x^5+22 x^4+27 x^3+48 x^2+33 x+5$
- $y^2=48 x^6+15 x^5+11 x^4+4 x^3+21 x^2+57 x+17$
- $y^2=35 x^6+30 x^5+22 x^4+8 x^3+42 x^2+53 x+34$
- $y^2=51 x^6+42 x^5+51 x^4+x^3+41 x^2+46 x+42$
- $y^2=23 x^6+16 x^5+31 x^4+35 x^3+14 x^2+39 x+60$
- $y^2=56 x^6+50 x^5+24 x^4+46 x^3+12 x^2+55 x+43$
- $y^2=51 x^6+39 x^5+48 x^4+31 x^3+24 x^2+49 x+25$
- $y^2=45 x^6+31 x^5+4 x^4+33 x^3+17 x^2+25 x+20$
- $y^2=29 x^6+x^5+8 x^4+5 x^3+34 x^2+50 x+40$
- $y^2=6 x^6+12 x^5+53 x^4+57 x^3+x^2+31 x+48$
- $y^2=12 x^6+24 x^5+45 x^4+53 x^3+2 x^2+x+35$
- $y^2=45 x^6+33 x^5+12 x^4+31 x^3+17 x^2+5 x+47$
- $y^2=29 x^6+5 x^5+24 x^4+x^3+34 x^2+10 x+33$
- and 148 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{2}}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{11}, \sqrt{-145})\). |
The base change of $A$ to $\F_{61^{2}}$ is 1.3721.x 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1595}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.a_ax | $4$ | (not in LMFDB) |