Properties

Label 2.59.k_ei
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $1 + 10 x + 112 x^{2} + 590 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.488233124100$, $\pm0.741468505668$
Angle rank:  $2$ (numerical)
Number field:  4.0.450516800.1
Galois group:  $D_{4}$
Jacobians:  $96$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4194$ $12556836$ $42059700954$ $146830850398800$ $511086549497458554$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $70$ $3606$ $204790$ $12117398$ $714882050$ $42180868566$ $2488654900130$ $146830390741918$ $8662995854231350$ $511116755012563206$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The endomorphism algebra of this simple isogeny class is 4.0.450516800.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.ak_ei$2$(not in LMFDB)