Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x + 21 x^{2} + 118 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.303322943998$, $\pm0.751077662369$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1176128.2 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3623$ | $12256609$ | $42228861956$ | $146980973225993$ | $511087272789476863$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $62$ | $3520$ | $205616$ | $12129780$ | $714883062$ | $42180195214$ | $2488650740834$ | $146830407838308$ | $8662996077294656$ | $511116754674306480$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=6 x^6+12 x^5+11 x^4+21 x^3+5 x^2+49 x+26$
- $y^2=24 x^6+55 x^5+53 x^4+38 x^3+55 x^2+12 x+2$
- $y^2=10 x^6+34 x^5+18 x^4+53 x^3+7 x^2+44 x+17$
- $y^2=44 x^6+46 x^5+8 x^4+51 x^3+26 x^2+42 x+9$
- $y^2=9 x^6+45 x^5+15 x^4+46 x^3+44 x^2+38 x+46$
- $y^2=4 x^6+45 x^5+28 x^4+45 x^3+42 x^2+35 x+40$
- $y^2=33 x^6+8 x^5+47 x^4+16 x^3+29 x^2+21 x+43$
- $y^2=49 x^6+5 x^5+31 x^4+17 x^3+56 x^2+44 x+41$
- $y^2=12 x^6+24 x^5+4 x^4+51 x^3+38 x^2+9 x+15$
- $y^2=41 x^6+54 x^5+5 x^4+14 x^3+25 x^2+9 x+55$
- $y^2=x^6+12 x^5+36 x^4+35 x^3+3 x^2+23 x+17$
- $y^2=40 x^6+54 x^5+36 x^4+37 x^3+46 x^2+31 x+16$
- $y^2=39 x^6+55 x^5+24 x^4+33 x^3+29 x^2+38 x+27$
- $y^2=33 x^6+28 x^5+51 x^4+22 x^3+33 x^2+18 x+48$
- $y^2=30 x^6+x^5+20 x^4+31 x^3+19 x^2+29 x+37$
- $y^2=7 x^6+21 x^5+16 x^4+2 x^3+22 x^2+33 x+49$
- $y^2=58 x^6+58 x^5+17 x^4+46 x^3+51 x^2+52 x+25$
- $y^2=19 x^6+18 x^5+11 x^4+14 x^3+51 x^2+28 x+8$
- $y^2=50 x^6+30 x^5+52 x^4+37 x^3+46 x^2+6 x+16$
- $y^2=31 x^6+28 x^5+43 x^4+27 x^3+45 x^2+55 x+16$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.1176128.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.ac_v | $2$ | (not in LMFDB) |