Properties

Label 2.59.az_ki
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 - 15 x + 59 x^{2} )( 1 - 10 x + 59 x^{2} )$
  $1 - 25 x + 268 x^{2} - 1475 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.0692665268586$, $\pm0.274373026800$
Angle rank:  $2$ (numerical)
Jacobians:  $8$
Isomorphism classes:  52

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2250$ $11812500$ $42190659000$ $146856496500000$ $511113983878743750$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $35$ $3393$ $205430$ $12119513$ $714920425$ $42180243858$ $2488648277395$ $146830421877553$ $8662995871133090$ $511116755105155473$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.ap $\times$ 1.59.ak and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.af_abg$2$(not in LMFDB)
2.59.f_abg$2$(not in LMFDB)
2.59.z_ki$2$(not in LMFDB)