Properties

Label 2.59.ay_kb
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 - 13 x + 59 x^{2} )( 1 - 11 x + 59 x^{2} )$
  $1 - 24 x + 261 x^{2} - 1416 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.178868127011$, $\pm0.245953251861$
Angle rank:  $2$ (numerical)
Jacobians:  $6$
Isomorphism classes:  8
Cyclic group of points:    yes

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2303$ $11936449$ $42328882064$ $146967587994745$ $511181597534110223$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $36$ $3428$ $206100$ $12128676$ $715014996$ $42180964886$ $2488651677324$ $146830418711236$ $8662995609906060$ $511116751993189028$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.an $\times$ 1.59.al and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.ac_az$2$(not in LMFDB)
2.59.c_az$2$(not in LMFDB)
2.59.y_kb$2$(not in LMFDB)