Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 14 x + 59 x^{2} )( 1 - 10 x + 59 x^{2} )$ |
| $1 - 24 x + 258 x^{2} - 1416 x^{3} + 3481 x^{4}$ | |
| Frobenius angles: | $\pm0.135062563049$, $\pm0.274373026800$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $32$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2300$ | $11914000$ | $42284251100$ | $146921541760000$ | $511151740852341500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $3422$ | $205884$ | $12124878$ | $714973236$ | $42180691502$ | $2488651536204$ | $146830441239838$ | $8662995945833796$ | $511116754938219902$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=38 x^6+20 x^5+3 x^4+14 x^3+3 x^2+20 x+38$
- $y^2=42 x^6+20 x^5+54 x^4+46 x^3+48 x^2+26 x+18$
- $y^2=15 x^6+30 x^5+8 x^4+16 x^3+55 x^2+8 x+17$
- $y^2=18 x^6+31 x^5+50 x^4+42 x^3+50 x^2+31 x+18$
- $y^2=44 x^6+8 x^5+43 x^4+49 x^3+43 x^2+8 x+44$
- $y^2=37 x^6+24 x^5+4 x^4+10 x^3+20 x^2+10 x+23$
- $y^2=19 x^6+17 x^5+46 x^4+54 x^3+21 x^2+29 x+28$
- $y^2=39 x^6+14 x^5+29 x^4+42 x^3+20 x^2+3 x+23$
- $y^2=55 x^6+12 x^5+5 x^4+12 x^3+5 x^2+12 x+55$
- $y^2=48 x^6+32 x^5+54 x^4+19 x^3+40 x^2+42 x+27$
- $y^2=58 x^6+26 x^5+51 x^4+56 x^3+17 x^2+16 x+24$
- $y^2=21 x^6+10 x^5+54 x^4+36 x^3+15 x+41$
- $y^2=16 x^6+9 x^5+46 x^4+31 x^3+43 x^2+27 x+11$
- $y^2=33 x^6+45 x^5+30 x^4+27 x^3+7 x^2+16 x+2$
- $y^2=34 x^6+18 x^5+7 x^4+46 x^3+38 x^2+42 x+54$
- $y^2=29 x^6+40 x^4+4 x^3+40 x^2+29$
- $y^2=39 x^6+55 x^5+21 x^4+42 x^3+15 x^2+15 x+11$
- $y^2=34 x^6+14 x^5+32 x^4+34 x^3+14 x^2+10 x+52$
- $y^2=39 x^6+29 x^5+45 x^4+12 x^3+28 x^2+10$
- $y^2=52 x^6+48 x^5+x^4+24 x^3+49 x^2+21 x+38$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The isogeny class factors as 1.59.ao $\times$ 1.59.ak and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.ae_aw | $2$ | (not in LMFDB) |
| 2.59.e_aw | $2$ | (not in LMFDB) |
| 2.59.y_jy | $2$ | (not in LMFDB) |