Properties

Label 2.59.ay_jv
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $1 - 24 x + 255 x^{2} - 1416 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.0976023068366$, $\pm0.291607162987$
Angle rank:  $2$ (numerical)
Number field:  4.0.2503312.2
Galois group:  $D_{4}$
Jacobians:  $4$
Isomorphism classes:  4

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2297$ $11891569$ $42239634068$ $146875063791817$ $511120340776624097$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $36$ $3416$ $205668$ $12121044$ $714929316$ $42180352670$ $2488650073596$ $146830444168420$ $8662996062338364$ $511116756106868936$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The endomorphism algebra of this simple isogeny class is 4.0.2503312.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.y_jv$2$(not in LMFDB)