Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 24 x + 255 x^{2} - 1416 x^{3} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.0976023068366$, $\pm0.291607162987$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.2503312.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $4$ |
| Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2297$ | $11891569$ | $42239634068$ | $146875063791817$ | $511120340776624097$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $3416$ | $205668$ | $12121044$ | $714929316$ | $42180352670$ | $2488650073596$ | $146830444168420$ | $8662996062338364$ | $511116756106868936$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=14 x^6+57 x^5+21 x^4+3 x^3+47 x^2+39 x+14$
- $y^2=14 x^6+53 x^5+25 x^4+51 x^3+58 x^2+46 x+32$
- $y^2=37 x^6+43 x^5+33 x^4+57 x^3+47 x^2+20$
- $y^2=23 x^6+14 x^5+32 x^4+9 x^3+23 x^2+27 x+37$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is 4.0.2503312.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.y_jv | $2$ | (not in LMFDB) |